Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39005293

ABSTRACT

Aging is a major driver of diseases in humans. Identifying features associated with aging is essential for designing robust intervention strategies and discovering novel biomarkers of aging. Extensive studies at both the molecular and organ/whole-body physiological scales have helped determined features associated with aging. However, the lack of meso-scale studies, particularly at the tissue level, limits the ability to translate findings made at molecular scale to impaired tissue functions associated with aging. In this work, we established a tissue image analysis workflow - quantitative micro-anatomical phenotyping (qMAP) - that leverages deep learning and machine vision to fully label tissue and cellular compartments in tissue sections. The fully mapped tissue images address the challenges of finding an interpretable feature set to quantitatively profile age-related microanatomic changes. We optimized qMAP for skin tissues and applied it to a cohort of 99 donors aged 14 to 92. We extracted 914 microanatomic features and found that a broad spectrum of these features, represented by 10 cores processes, are strongly associated with aging. Our analysis shows that microanatomical features of the skin can predict aging with a mean absolute error (MAE) of 7.7 years, comparable to state-of-the-art epigenetic clocks. Our study demonstrates that tissue-level architectural changes are strongly associated with aging and represent a novel category of aging biomarkers that complement molecular markers. Our results highlight the complex and underexplored multi-scale relationship between molecular and tissue microanatomic scales.

2.
Immunity ; 57(6): 1177-1181, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38865960

ABSTRACT

AI is rapidly becoming part of many aspects of daily life, with an impact that reaches all fields of research. We asked investigators to share their thoughts on how AI is changing immunology research, what is necessary to move forward, the potential and the pitfalls, and what will remain unchanged as the field journeys into a new era.


Subject(s)
Allergy and Immunology , Artificial Intelligence , Humans , Animals
3.
Nature ; 629(8012): 679-687, 2024 May.
Article in English | MEDLINE | ID: mdl-38693266

ABSTRACT

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Subject(s)
Genetic Heterogeneity , Genomics , Imaging, Three-Dimensional , Pancreatic Neoplasms , Precancerous Conditions , Single-Cell Analysis , Adult , Female , Humans , Male , Clone Cells/metabolism , Clone Cells/pathology , Exome Sequencing , Machine Learning , Mutation , Pancreas/anatomy & histology , Pancreas/cytology , Pancreas/metabolism , Pancreas/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/pathology , Workflow , Disease Progression , Early Detection of Cancer , Oncogenes/genetics
4.
Am J Surg Pathol ; 48(7): 839-845, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38764379

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.


Subject(s)
Carcinoma, Pancreatic Ductal , Imaging, Three-Dimensional , Pancreatic Intraductal Neoplasms , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/classification , Pancreatic Intraductal Neoplasms/pathology , Pancreatic Intraductal Neoplasms/diagnostic imaging , Female , Carcinoma in Situ/pathology , Carcinoma in Situ/diagnostic imaging , Male , Middle Aged , Aged , Tomography, X-Ray Computed , Tumor Burden , Predictive Value of Tests
5.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38496512

ABSTRACT

The development of novel imaging platforms has improved our ability to collect and analyze large three-dimensional (3D) biological imaging datasets. Advances in computing have led to an ability to extract complex spatial information from these data, such as the composition, morphology, and interactions of multi-cellular structures, rare events, and integration of multi-modal features combining anatomical, molecular, and transcriptomic (among other) information. Yet, the accuracy of these quantitative results is intrinsically limited by the quality of the input images, which can contain missing or damaged regions, or can be of poor resolution due to mechanical, temporal, or financial constraints. In applications ranging from intact imaging (e.g. light-sheet microscopy and magnetic resonance imaging) to sectioning based platforms (e.g. serial histology and serial section transmission electron microscopy), the quality and resolution of imaging data has become paramount. Here, we address these challenges by leveraging frame interpolation for large image motion (FILM), a generative AI model originally developed for temporal interpolation, for spatial interpolation of a range of 3D image types. Comparative analysis demonstrates the superiority of FILM over traditional linear interpolation to produce functional synthetic images, due to its ability to better preserve biological information including microanatomical features and cell counts, as well as image quality, such as contrast, variance, and luminance. FILM repairs tissue damages in images and reduces stitching artifacts. We show that FILM can decrease imaging time by synthesizing skipped images. We demonstrate the versatility of our method with a wide range of imaging modalities (histology, tissue-clearing/light-sheet microscopy, magnetic resonance imaging, serial section transmission electron microscopy), species (human, mouse), healthy and diseased tissues (pancreas, lung, brain), staining techniques (IHC, H&E), and pixel resolutions (8 nm, 2 µm, 1mm). Overall, we demonstrate the potential of generative AI in improving the resolution, throughput, and quality of biological image datasets, enabling improved 3D imaging.

6.
Brain ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38554393

ABSTRACT

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical allodynia. The role of skin mechanoreceptors in the development of mechanical allodynia is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin-keratinocyte specific BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

7.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38370632

ABSTRACT

Failure of septation of the interventricular septum (IVS) is the most common congenital heart defect (CHD), but mechanisms for patterning the IVS are largely unknown. We show that a Tbx5+/Mef2cAHF+ progenitor lineage forms a compartment boundary bisecting the IVS. This coordinated population originates at a first- and second heart field interface, subsequently forming a morphogenetic nexus. Ablation of Tbx5+/Mef2cAHF+ progenitors cause IVS disorganization, right ventricular hypoplasia and mixing of IVS lineages. Reduced dosage of the CHD transcription factor TBX5 disrupts boundary position and integrity, resulting in ventricular septation defects (VSDs) and patterning defects, including Slit2 and Ntn1 misexpression. Reducing NTN1 dosage partly rescues cardiac defects in Tbx5 mutant embryos. Loss of Slit2 or Ntn1 causes VSDs and perturbed septal lineage distributions. Thus, we identify essential cues that direct progenitors to pattern a compartment boundary for proper cardiac septation, revealing new mechanisms for cardiac birth defects.

8.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38168186

ABSTRACT

Chimeric antigen receptor (CAR) T cells express antigen-specific synthetic receptors, which upon binding to cancer cells, elicit T cell anti-tumor responses. CAR T cell therapy has enjoyed success in the clinic for hematological cancer indications, giving rise to decade-long remissions in some cases. However, CAR T therapy for patients with solid tumors has not seen similar success. Solid tumors constitute 90% of adult human cancers, representing an enormous unmet clinical need. Current approaches do not solve the central problem of limited ability of therapeutic cells to migrate through the stromal matrix. We discover that T cells at low and high density display low- and high-migration phenotypes, respectively. The highly migratory phenotype is mediated by a paracrine pathway from a group of self-produced cytokines that include IL5, TNFα, IFNγ, and IL8. We exploit this finding to "lock-in" a highly migratory phenotype by developing and expressing receptors, which we call velocity receptors (VRs). VRs target these cytokines and signal through these cytokines' cognate receptors to increase T cell motility and infiltrate lung, ovarian, and pancreatic tumors in large numbers and at doses for which control CAR T cells remain confined to the tumor periphery. In contrast to CAR therapy alone, VR-CAR T cells significantly attenuate tumor growth and extend overall survival. This work suggests that approaches to the design of immune cell receptors that focus on migration signaling will help current and future CAR cellular therapies to infiltrate deep into solid tumors.

9.
Pancreas ; 53(2): e180-e186, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38194643

ABSTRACT

OBJECTIVE: The aim of the study is to assess the relationship between magnetic resonance imaging (MRI)-based estimation of pancreatic fat and histology-based measurement of pancreatic composition. MATERIALS AND METHODS: In this retrospective study, MRI was used to noninvasively estimate pancreatic fat content in preoperative images from high-risk individuals and disease controls having normal pancreata. A deep learning algorithm was used to label 11 tissue components at micron resolution in subsequent pancreatectomy histology. A linear model was used to determine correlation between histologic tissue composition and MRI fat estimation. RESULTS: Twenty-seven patients (mean age 64.0 ± 12.0 years [standard deviation], 15 women) were evaluated. The fat content measured by MRI ranged from 0% to 36.9%. Intrapancreatic histologic tissue fat content ranged from 0.8% to 38.3%. MRI pancreatic fat estimation positively correlated with microanatomical composition of fat (r = 0.90, 0.83 to 0.95], P < 0.001); as well as with pancreatic cancer precursor ( r = 0.65, P < 0.001); and collagen ( r = 0.46, P < 0.001) content, and negatively correlated with pancreatic acinar ( r = -0.85, P < 0.001) content. CONCLUSIONS: Pancreatic fat content, measurable by MRI, correlates to acinar content, stromal content (fibrosis), and presence of neoplastic precursors of cancer.


Subject(s)
Adipose Tissue , Magnetic Resonance Imaging , Pancreas, Exocrine , Aged , Female , Humans , Middle Aged , Adipose Tissue/diagnostic imaging , Magnetic Resonance Imaging/methods , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreas, Exocrine/diagnostic imaging , Pancreatic Neoplasms/pathology , Retrospective Studies
10.
bioRxiv ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-36747753

ABSTRACT

Diabetic neuropathy is a debilitating disorder characterized by spontaneous and mechanical pain. The role of skin mechanoreceptors in the development of mechanical pain (allodynia) is unclear. We discovered that mice with diabetic neuropathy had decreased sirtuin 1 (SIRT1) deacetylase activity in foot skin, leading to reduced expression of brain-derived neurotrophic factor (BDNF) and subsequent loss of innervation in Meissner corpuscles, a mechanoreceptor expressing the BDNF receptor TrkB. When SIRT1 was depleted from skin, the mechanical allodynia worsened in diabetic neuropathy mice, likely due to retrograde degeneration of the Meissner-corpuscle innervating Aß axons and aberrant formation of Meissner corpuscles which may have increased the mechanosensitivity. The same phenomenon was also noted in skin BDNF knockout mice. Furthermore, overexpression of SIRT1 in skin induced Meissner corpuscle reinnervation and regeneration, resulting in significant improvement of diabetic mechanical allodynia. Overall, the findings suggested that skin-derived SIRT1 and BDNF function in the same pathway in skin sensory apparatus regeneration and highlighted the potential of developing topical SIRT1-activating compounds as a novel treatment for diabetic mechanical allodynia.

11.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38106231

ABSTRACT

Methods for spatially resolved cellular profiling using thinly cut sections have enabled in-depth quantitative tissue mapping to study inter-sample and intra-sample differences in normal human anatomy and disease onset and progression. These methods often profile extremely limited regions, which may impact the evaluation of heterogeneity due to tissue sub-sampling. Here, we applied CODA, a deep learning-based tissue mapping platform, to reconstruct the three-dimensional (3D) microanatomy of grossly normal and cancer-containing human pancreas biospecimens obtained from individuals who underwent pancreatic resection. To compare inter- and intra-sample heterogeneity, we assessed bulk and spatially resolved tissue composition in a cohort of two-dimensional (2D) whole slide images (WSIs) and a cohort of thick slabs of pancreas tissue that were digitally reconstructed in 3D from serial sections. To demonstrate the marked under sampling of 2D assessments, we simulated the number of WSIs and tissue microarrays (TMAs) necessary to represent the compositional heterogeneity of 3D data within 10% error to reveal that tens of WSIs and hundreds of TMA cores are sometimes needed. We show that spatial correlation of different pancreatic structures decay significantly within a span of microns, demonstrating that 2D histological sections may not be representative of their neighboring tissues. In sum, we demonstrate that 3D assessments are necessary to accurately assess tissue composition in normal and abnormal specimens and in order to accurately determine neoplastic content. These results emphasize the importance of intra-sample heterogeneity in tissue mapping efforts.

12.
bioRxiv ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38106004

ABSTRACT

Kidneys are among the most structurally complex organs in the body. Their architecture is critical to ensure proper function and is often impacted by diseases such as diabetes and hypertension. Understanding the spatial interplay between the different structures of the nephron and renal vasculature is crucial. Recent efforts have demonstrated the value of three-dimensional (3D) imaging in revealing new insights into the various components of the kidney; however, these studies used antibodies or autofluorescence to detect structures and so were limited in their ability to compare the many subtle structures of the kidney at once. Here, through 3D reconstruction of fetal rhesus macaque kidneys at cellular resolution, we demonstrate the power of deep learning in exhaustively labelling seventeen microstructures of the kidney. Using these tissue maps, we interrogate the spatial distribution and spatial correlation of the glomeruli, renal arteries, and the nephron. This work demonstrates the power of deep learning applied to 3D tissue images to improve our ability to compare many microanatomical structures at once, paving the way for further works investigating renal pathologies.

13.
bioRxiv ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38105957

ABSTRACT

Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence reveals that pancreatic intraepithelial neoplasms (PanINs), the microscopic precursor lesions in the pancreatic ducts that can give rise to invasive pancreatic cancer, are significantly larger and more prevalent than previously believed. Better understanding of the growth law dynamics of PanINs may improve our ability to understand how a miniscule fraction of these lesions makes the transition to invasive cancer. Here, using artificial intelligence (AI)-based three-dimensional (3D) tissue mapping method, we measured the volumes of >1,000 PanIN and found that lesion size is distributed according to a power law with a fitted exponent of -1.7 over > 3 orders of magnitude. Our data also suggest that PanIN growth is not very sensitive to the pancreatic microenvironment or an individual's age, family history, and lifestyle, and is rather shaped by general growth behavior. We analyze several models of PanIN growth and fit the predicted size distributions to the observed data. The best fitting models suggest that both intraductal spread of PanIN lesions and fusing of multiple lesions into large, highly branched structures drive PanIN growth patterns. This work lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, genomic, and transcriptomic features to understand pancreas tumorigenesis, and demonstrates the utility of combining experimental measurement of human tissues with dynamic modeling for understanding cancer tumorigenesis.

14.
Res Sq ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790337

ABSTRACT

Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly regular, reversible, multicellular, multi-layered domains on soft matrix. Local activation of the ß2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation of phase separation, combined with a Turing mechanism of local activation and global inhibition suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on domain pattern formation. This work reveals that, unlike active matters, cells can generate complex cell phases by exploiting their mechanosensing abilities and combined short-range interactions and long-range signals to enhance their survival.

15.
Virchows Arch ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37704824

ABSTRACT

The liver has multiple regeneration modes, including hepatocellular hypertrophy and self-renewal of hepatocytes. When hepatocyte proliferation is impaired, hepatic progenitor cells may proliferate through ductular reaction (DR), differentiate into hepatocytes, and contribute to fibrosis. However, the three-dimensional spatial relationship between DR and regenerating hepatocytes and dynamic changes in DR associated with fibrosis remain poorly understood. Here, we performed three-dimensional (3D) imaging of cleared 42 liver explants with chronic and acute liver diseases and 4 normal livers to visualize DR. In chronic hepatic liver diseases, such as viral hepatitis, steatohepatitis, autoimmune hepatitis, and cryptogenic cirrhosis, the total length and number of branches of DR showed a significant positive correlation. We studied the spatial relationship between DR and GS-expressing cells using glutamine synthetase (GS) and cytokeratin 19 (CK19) as markers of liver regeneration and DR, respectively. The percentage of CK19-positive cells that co-expressed GS was less than 10% in chronic liver diseases. In contrast, nearly one-third of CK19-positive cells co-expressed GS in acute liver diseases, and chronic cholestatic liver diseases, including primary biliary cholangitis and primary sclerosing cholangitis, showed no co-expression. We also found that DR was longer and had more branching in livers with progressive fibrosis compared to those with regressive fibrosis. Our results suggest that DR displays varying degrees of spatial complexity and contribution to liver regeneration. DR may serve as hepatobiliary junctions that maintain continuity between hepatocytes and bile ducts rather than hepatocyte regeneration in chronic liver diseases.

16.
bioRxiv ; 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37745323

ABSTRACT

Cells are fundamental units of life, constantly interacting and evolving as dynamical systems. While recent spatial multi-omics can quantitate individual cells' characteristics and regulatory programs, forecasting their evolution ultimately requires mathematical modeling. We develop a conceptual framework-a cell behavior hypothesis grammar-that uses natural language statements (cell rules) to create mathematical models. This allows us to systematically integrate biological knowledge and multi-omics data to make them computable. We can then perform virtual "thought experiments" that challenge and extend our understanding of multicellular systems, and ultimately generate new testable hypotheses. In this paper, we motivate and describe the grammar, provide a reference implementation, and demonstrate its potential through a series of examples in tumor biology and immunotherapy. Altogether, this approach provides a bridge between biological, clinical, and systems biology researchers for mathematical modeling of biological systems at scale, allowing the community to extrapolate from single-cell characterization to emergent multicellular behavior.

18.
bioRxiv ; 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37546904

ABSTRACT

Matrix stiffness and corresponding mechano-signaling play indispensable roles in cellular phenotypes and functions. How tissue stiffness influences the behavior of monocytes, a major circulating leukocyte of the innate system, and how it may promote the emergence of collective cell behavior is less understood. Here, using tunable collagen-coated hydrogels of physiological stiffness, we show that human primary monocytes undergo a dynamic local phase separation to form highly patterned multicellular multi-layered domains on soft matrix. Local activation of the ß2 integrin initiates inter-cellular adhesion, while global soluble inhibitory factors maintain the steady-state domain pattern over days. Patterned domain formation generated by monocytes is unique among other key immune cells, including macrophages, B cells, T cells, and NK cells. While inhibiting their phagocytic capability, domain formation promotes monocytes' survival. We develop a computational model based on the Cahn-Hilliard equation, which includes combined local activation and global inhibition mechanisms of intercellular adhesion suggested by our experiments, and provides experimentally validated predictions of the role of seeding density and both chemotactic and random cell migration on pattern formation.

19.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333379

ABSTRACT

The fallopian tube has an essential role in several physiological and pathological processes from pregnancy to ovarian cancer. However, there are no biologically relevant models to study its pathophysiology. The state-of-the-art organoid model has been compared to two-dimensional tissue sections and molecularly assessed providing only cursory analyses of the model's accuracy. We developed a novel multi-compartment organoid model of the human fallopian tube that was meticulously tuned to reflect the compartmentalization and heterogeneity of the tissue's composition. We validated this organoid's molecular expression patterns, cilia-driven transport function, and structural accuracy through a highly iterative platform wherein organoids are compared to a three-dimensional, single-cell resolution reference map of a healthy, transplantation-quality human fallopian tube. This organoid model was precision-engineered to match the human microanatomy. One sentence summary: Tunable organoid modeling and CODA architectural quantification in tandem help design a tissue-validated organoid model.

20.
Cell Syst ; 14(4): 285-301.e4, 2023 04 19.
Article in English | MEDLINE | ID: mdl-37080163

ABSTRACT

Recent advances in spatial transcriptomics (STs) enable gene expression measurements from a tissue sample while retaining its spatial context. This technology enables unprecedented in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor as well as the tumor microenvironment (TME). The direct characterization of cellular co-localization with spatial technologies facilities quantification of the molecular changes resulting from direct cell-cell interaction, as it occurs in tumor-immune interactions. We present SpaceMarkers, a bioinformatics algorithm to infer molecular changes from cell-cell interactions from latent space analysis of ST data. We apply this approach to infer the molecular changes from tumor-immune interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, SpaceMarkers can identify the location and context-specific molecular interactions within the TME from ST data.


Subject(s)
Algorithms , Tumor Microenvironment , Cell Communication , Computational Biology , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...