Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 122: 103389, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820806

ABSTRACT

PURPOSE: To evaluate the efficiency of organ-based tube current modulation (OBTCM) in head Computed Tomography (CT) for different radiology departments and manufacturers. MATERIALS AND METHODS: Five CT scanners from four radiology departments were evaluated in this study. All scans were performed using a standard and a routine head protocol. A scintillating fiber optic detector was placed directly on the gantry to measure the tube exit kerma. Image quality was quantified on a 16-cm HEAD phantom by measuring the signal-to-noise ratio (SNR) and the standard deviation of the Hounsfield units (HU) of circular regions of interest placed in the phantom. The Noise Power Spectrum (NPS) was also studied. Measured values were compared on images with and without OBTCM. RESULTS: The reduction rates in tube exit kerma, on the anterior part, vary between 11 % and 74 % depending on the CT scanner and the protocol used. The tube exit kerma on the posterior part remains unchanged in GE and Canon CT scanners. On the contrary, the tube exit kerma to the posterior part increases by up to 39 % in Siemens CT scanner. Image noise and SNR increase by up to 10 % in the five CT scanners. Nonetheless, the differences in noise and SNR are statistically significant (p-value < 0.05).The analysis of the NPS indicates that the noise texture remains unchanged. CONCLUSION: OBTCM reduces the tube exit kerma to the anterior part of the gantry without reducing substantially image quality for head protocols.


Subject(s)
Head , Phantoms, Imaging , Radiometry , Signal-To-Noise Ratio , Tomography, X-Ray Computed , Head/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Humans , Radiometry/instrumentation , Image Processing, Computer-Assisted/methods , Quality Control , Tomography Scanners, X-Ray Computed
2.
Sensors (Basel) ; 23(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36904817

ABSTRACT

(1) Background: The IVIscan is a commercially available scintillating fiber detector designed for quality assurance and in vivo dosimetry in computed tomography (CT). In this work, we investigated the performance of the IVIscan scintillator and associated method in a wide range of beam width from three CT manufacturers and compared it to a CT chamber designed for Computed Tomography Dose Index (CTDI) measurements. (2) Methods: We measured weighted CTDI (CTDIw) with each detector in accordance with the requirements of regulatory tests and international recommendations for the minimum, maximum and the most used beam width in clinic and investigated the accuracy of the IVIscan system based on the assessment of the CTDIw deviation from the CT chamber. We also investigated the IVIscan accuracy for the whole range of the CT scans kV. (3) Results: We found excellent agreement between the IVIscan scintillator and the CT chamber for the whole range of beam widths and kV, especially for wide beams used on recent technology of CT scans. (4) Conclusions: These findings highlight that the IVIscan scintillator is a relevant detector for CT radiation dose assessments, and the method associated with calculating the CTDIw saves a significant amount of time and effort when performing tests, especially with regard to new CT technologies.

3.
Pediatr Radiol ; 52(1): 50-57, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657168

ABSTRACT

BACKGROUND: Paediatric gastrointestinal fluoroscopy examinations can impart varying amounts of radiation for the same patient size and exam type. OBJECTIVE: To investigate the variability of imaging protocol, radiation dose and image quality in paediatric fluoroscopy examinations in order to provide recommendations for the harmonisation and optimisation of local practices. MATERIALS AND METHODS: Five paediatric radiology departments performing fluoroscopically-guided contrast enema, micturating cystourethrography and upper gastrointestinal tract examinations participated in this study. Information on imaging protocols and radiation doses was retrospectively collected for more than 2,400 examinations. Image quality was analysed on clinical and phantom images. RESULTS: Patient doses showed great variability among centers with up to a factor of 5 for similar fluoroscopy times. The five departments had imaging protocols with major differences in fluoroscopy dose regulation curves and additional filtration. Image quality analysis on phantoms and patients images showed no major improvement in contrast, spatial resolution or noise when increasing the radiation dose. Age-based diagnostic reference levels using both dose area product and fluoroscopy time were proposed per procedure type. CONCLUSION: Disparities between centers and no correlation of radiation dose with image quality criteria create margins for optimisation. These results highlight the need for guidelines on fluoroscopy image quality and dose reference levels in paediatric gastrointestinal examinations to harmonise practices and optimise patient dose.


Subject(s)
Gastrointestinal Tract , Child , Fluoroscopy , Humans , Multicenter Studies as Topic , Phantoms, Imaging , Radiation Dosage , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...