Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 24(11): 6428-6443, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35244104

ABSTRACT

Ozonolysis of unsaturated hydrocarbons (VOCs) is one of the main oxidation processes in the atmosphere. The stabilized Criegee intermediates (SCI) formed are highly reactive oxygenated species that potentially influence the HOx, NOx and SOx cycles, and affect aerosol formation by yielding low-volatility oxygenated compounds. The current knowledge spans mostly SCI formed from primary emitted VOCs, but little is known about the reactivity of oxygenated SCI. In this work we present a theoretical kinetic study of a large number of unsaturated and oxygenated SCI, covering CC, OH, OR, OOH, OOOH, COOH, COOR, and ONO2 functionalities at various stereo- and site-specific substitutions relative to the SCI carbonyl oxide moiety. Several novel reaction types are covered, the most important of which are fast intramolecular insertion reactions in OH, OOH and COOH groups, or secondary ozonide formation with a COOH group, forming cyclic oxygenated species; these reaction classes are reminiscent of the analogous bimolecular reactions. The reaction with H2O molecules was likewise studied, finding that these cyclisation reactions can be catalysed, with predicted rate coefficients nearing the collision limit. The theoretical data is used to extend the structure-activity relationships (SARs) proposed by Vereecken et al. (2017), predicting the dominant unimolecular reaction class and rate, and the rates for reaction with H2O and (H2O)2. The SARs cover over 300 SCI categories with over 40 substituent categories. The validation of these SARs is discussed, and an outlook is given for further improvement. The generally short lifetime of oxygenated SCI suggests that ozonolysis of secondary, oxygenated VOCs is unlikely to yield ambient concentrations of SCI exceeding 104 cm-3 but will contribute strongly to the in situ formation of oxygenated VOCs.

2.
Phys Chem Chem Phys ; 23(31): 16564-16576, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34313271

ABSTRACT

Terpenoids are an important class of multi-unsaturated volatile organic compounds emitted to the atmosphere. During their oxidation in the troposphere, unsaturated peroxy radicals are formed, which may undergo ring closure reactions by an addition of the radical oxygen atom on either of the carbons in the C[double bond, length as m-dash]C double bond. This study describes a quantum chemical and theoretical kinetic study of the rate of ring closure, finding that the reactions are comparatively fast with rates often exceeding 1 s-1 at room temperature, making these reactions competitive in low-NOx environments and allowing for continued autoxidation by ring closure. A structure-activity relationship (SAR) is presented for 5- to 8-membered ring closure in unsaturated RO2 radicals with aliphatic substituents, with some analysis of the impact of oxygenated substituents. H-migration in the cycloperoxide peroxy radicals formed after the ring closure was found to be comparatively slow for unsubstituted RO2 radicals. In the related cycloperoxide alkoxy radicals, migration of H-atoms implanted on the ring was similarly found to be slower than for non-cyclic alkoxy radicals and is typically not competitive against decomposition reactions that lead to cycloperoxide ring breaking. Ring closure reactions may constitute an important reaction channel in the atmospheric oxidation of terpenoids and could promote continued autoxidation, though the impact is likely to be strongly dependent on the specific molecular backbone.

3.
Nature ; 593(7858): 233-237, 2021 05.
Article in English | MEDLINE | ID: mdl-33981052

ABSTRACT

Atmospheric acidity is increasingly determined by carbon dioxide and organic acids1-3. Among the latter, formic acid facilitates the nucleation of cloud droplets4 and contributes to the acidity of clouds and rainwater1,5. At present, chemistry-climate models greatly underestimate the atmospheric burden of formic acid, because key processes related to its sources and sinks remain poorly understood2,6-9. Here we present atmospheric chamber experiments that show that formaldehyde is efficiently converted to gaseous formic acid via a multiphase pathway that involves its hydrated form, methanediol. In warm cloud droplets, methanediol undergoes fast outgassing but slow dehydration. Using a chemistry-climate model, we estimate that the gas-phase oxidation of methanediol produces up to four times more formic acid than all other known chemical sources combined. Our findings reconcile model predictions and measurements of formic acid abundance. The additional formic acid burden increases atmospheric acidity by reducing the pH of clouds and rainwater by up to 0.3. The diol mechanism presented here probably applies to other aldehydes and may help to explain the high atmospheric levels of other organic acids that affect aerosol growth and cloud evolution.

4.
Phys Chem Chem Phys ; 23(9): 5496-5515, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33650589

ABSTRACT

The initial stages of the nitrate radical (NO3) initiated oxidation of isoprene, in particular the fate of the peroxy (RO2) and alkoxy (RO) radicals, are examined by an extensive set of quantum chemical and theoretical kinetic calculations. It is shown that the oxidation mechanism is highly complex, and bears similarities to its OH-initiated oxidation mechanism as studied intensively over the last decade. The nascent nitrated RO2 radicals can interconvert by successive O2 addition/elimination reactions, and potentially have access to a wide range of unimolecular reactions with rate coefficients as high as 35 s-1; the contribution of this chemistry could not be ascertained experimentally. The chemistry of the alkoxy radicals derived from these peroxy radicals is affected by the nitrate moiety, and can lead to the formation of nitrated epoxy peroxy radicals in competition with isomerisation and decomposition channels that terminate the organic radical chain by NO2 elimination. The theoretical predictions are implemented in the FZJ-NO3-isoprene mechanism for NO3-initiated atmospheric oxidation of isoprene. The model predictions are compared against peroxy radical (RO2) and methyl vinyl ketone (MVK) measurements in a set of experiments on the isoprene + NO3 reaction system performed in the SAPHIR environmental chamber (IsopNO3 campaign). It is shown that the formation of NO2 from the peroxy radicals can prevent a large fraction of the peroxy radicals from being measured by the laser-induced fluorescence (ROxLIF) technique that relies on a quantitative conversion of peroxy radicals to hydroxyl radicals. Accounting for the relative conversion efficiency of RO2 species in the experiments, the agreement between observations and the theory-based FZJ-NO3-isoprene model predictions improves significantly. In addition, MVK formation in the NO3-initiated oxidation was found to be suppressed by the epoxidation of the unsaturated RO radical intermediates, allowing the model-predicted MVK concentrations to be in good agreement with the measurements. The FZJ-NO3-isoprene mechanism is compared against the MCM v3.3.1 and Wennberg et al. (2018) mechanisms.

5.
Phys Chem Chem Phys ; 23(9): 5474-5495, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33650597

ABSTRACT

The chemistry of nitrated alkoxy radicals, and its impact on RO2 measurements using the laser induced fluorescence (LIF) technique, is examined by a combined theoretical and experimental study. Quantum chemical and theoretical kinetic calculations show that the decomposition of ß-nitrate-alkoxy radicals is much slower than ß-OH-substituted alkoxy radicals, and that the spontaneous fragmentation of the α-nitrate-alkyl radical product to a carbonyl product + NO2 prevents other ß-substituents from efficiently reducing the energy barrier. The systematic series of calculations is summarized as an update to the structure-activity relationship (SAR) by Vereecken and Peeters (2009), and shows increasing decomposition rates with higher degrees of substitution, as in the series ethene to 2,3-dimethyl-butene, and dominant H-migration for sufficiently large alkoxy radicals such as those formed from 1-pentene or longer alkenes. The slow decomposition allows other reactions to become competitive, including epoxidation in unsaturated nitrate-alkoxy radicals; the decomposition SAR is likewise updated for ß-epoxy substituents. A set of experiments investigating the NO3-initiated oxidation of ethene, propene, cis-2-butene, 2,3-dimethyl-butene, 1-pentene, and trans-2-hexene, were performed in the atmospheric simulation chamber SAPHIR with measurements of HO2 and RO2 radicals performed with a LIF instrument. Comparisons between modelled and measured HO2 radicals in all experiments, performed in excess of carbon monoxide to avoid OH radical chemistry, suggest that the reaction of HO2 with ß-nitrate alkylperoxy radicals has a channel forming OH and an alkoxy radical in yields of 15-65%, compatible with earlier literature data on nitrated isoprene and α-pinene radicals. Model concentrations of RO2 radicals when including the results of the theoretical calculations described here, agreed within 10% with the measured RO2 radicals for all species investigated when the alkene oxidation is dominated by NO3 radicals. The formation of NO2 in the decomposition of ß-nitrate alkoxy radicals prevents detection of the parent RO2 radical in a LIF instrument, as it relies on formation of HO2. The implications for measurements of RO2 in ambient and experimental conditions, such as for the NO3-dominated chemistry during nighttime, is discussed. The current results appear in disagreement with an earlier indirect experimental study by Yeh et al. on pentadecene.

6.
Environ Sci Technol ; 52(19): 11094-11101, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30169962

ABSTRACT

Compound specific carbon isotopic measurements (δ13C) of levoglucosan were carried out for ambient aerosol sampled during an intensive biomass burning period at different sites in Guangdong province, China. The δ13C of ambient levoglucosan was found to be noticeably heavier than the average δ13C of levoglucosan found in source C3-plant-combustion samples. To estimate the photochemical age of sampled ambient levoglucosan, back trajectory analyses were done. The origin and pathways of the probed air masses were determined, using the Lagrangian-particle-dispersion-model FLEXPART and ECMWF meteorological data. On the other hand, the isotopic hydrocarbon clock concept was applied to relate the changes in the field-measured stable carbon isotopic composition to the extent of chemical processing during transport. Comparison of the photochemical age derived using these two independent approaches shows on average good agreement, despite a substantial scatter of the individual data pairs. These analyses demonstrate that the degree of oxidative aging of particulate levoglucosan can be quantified by combining laboratory KIE studies, observed δ13C at the source and in the field, as well as back trajectory analyses. In this study, the chemical loss of levoglucosan was found to exceed 50% in one-fifth of the analyzed samples. Consequently, the use of levoglucosan as a stable molecular tracer may underestimate the contribution of biomass burning to air pollution.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Biomass , China , Environmental Monitoring , Glucose/analogs & derivatives , Seasons
7.
Faraday Discuss ; 200: 331-351, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28580998

ABSTRACT

Ambient measurements of PM1 aerosol chemical composition at Cabauw, the Netherlands, implicate higher ammonium concentrations than explained by the formation of inorganic ammonium salts. This additional particulate ammonium is called excess ammonium (eNH4). Height profiles over the Cabauw Experimental Site for Atmospheric Research (CESAR) tower, of combined ground based and airborne aerosol mass spectrometric (AMS) measurements on a Zeppelin airship show higher concentrations of eNH4 at higher altitudes compared to the ground. Through flights across the Netherlands, the Zeppelin based measurements furthermore substantiate eNH4 as a regional phenomenon in the planetary boundary layer. The excess ammonium correlates with mass spectral signatures of (di-)carboxylic acids, making a heterogeneous acid-base reaction the likely process of NH3 uptake. We show that this excess ammonium was neutralized by the organic fraction forming particulate organic ammonium salts. We discuss the significance of such organic ammonium salts for atmospheric aerosols and suggest that NH3 emission control will have benefits for particulate matter control beyond the reduction of inorganic ammonium salts.

8.
Nat Commun ; 8: 14067, 2017 02 20.
Article in English | MEDLINE | ID: mdl-28218253

ABSTRACT

The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.


Subject(s)
Atmosphere/analysis , Plants/metabolism , Trees/growth & development , Volatile Organic Compounds/analysis , Aerosols/chemistry , Algorithms , Climate , Models, Theoretical , Particle Size , Plants/classification , Stress, Physiological/physiology , Temperature , Trees/classification
9.
Sci Rep ; 5: 12064, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26165168

ABSTRACT

Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y(-1)), pointing to the importance of these natural emissions in atmospheric physics and chemistry.


Subject(s)
Atmosphere/analysis , Benzene/chemistry , Fossil Fuels/analysis , Trees/metabolism , Volatile Organic Compounds/chemistry , Climate , Ecosystem , Stress, Physiological/physiology
10.
Environ Sci Technol ; 46(6): 3312-8, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22313249

ABSTRACT

A new method for stable carbon isotope ratio analysis of anhydrosugars from biomass burning aerosol particle source filter samples was developed by employing Thermal Desorption--2 Dimensional Gas Chromatography--Isotope Ratio Mass Spectrometry (TD-2DGC-IRMS). Compound specific isotopic measurements of levoglucosan, mannosan, and galactosan performed by TD-2DGC-IRMS in a standard mixture show good agreement with isotopic measurements of the bulk anhydrosugars, carried out by Elemental Analyzer--Isotope Ratio Mass Spectrometry (EA-IRMS). The established method was applied to determine the isotope ratios of levoglucosan, mannosan, and galactosan from source samples collected during combustion of hard wood, softwood, and crop residues. δ(13)C values of levoglucosan were found to vary between -25.6 and -22.2‰, being higher in the case of softwood. Mannosan and galactosan were detected only in the softwood samples showing isotope ratios of -23.5‰ (mannosan) and -25.7‰ (galactosan). The isotopic composition of holocellulose in the plant material used for combustion experiments was determined with δ(13)C values between -28.5 and -23.7‰. The difference in δ(13)C of levoglucosan in biomass burning aerosol particles compared to the parent fuel holocellulose was found to be -1.89 (±0.37)‰ for the investigated biomass fuels. Compound specific δ(13)C measurements of anhydrosugars should contribute to an improved source apportionment.


Subject(s)
Air Pollutants/analysis , Carbon Isotopes/analysis , Hexoses/analysis , Particulate Matter/analysis , Aerosols , Biomass , Cycadopsida , Hot Temperature , Magnoliopsida
SELECTION OF CITATIONS
SEARCH DETAIL
...