Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 260, 2019.
Article in English | MEDLINE | ID: mdl-30971881

ABSTRACT

Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play a simplified version of the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57 mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.

2.
IEEE Trans Biomed Circuits Syst ; 12(5): 1027-1037, 2018 10.
Article in English | MEDLINE | ID: mdl-30047897

ABSTRACT

Here, we describe a multicompartment neuron circuit based on the adaptive-exponential I&F (AdEx) model, developed for the second-generation BrainScaleS hardware. Based on an existing modular leaky integrate-and-fire (LIF) architecture designed in 65-nm CMOS, the circuit features exponential spike generation, neuronal adaptation, intercompartmental connections as well as a conductance-based reset. The design reproduces a diverse set of firing patterns observed in cortical pyramidal neurons. Further, it enables the emulation of sodium and calcium spikes, as well as N-methyl-D-aspartate plateau potentials known from apical and thin dendrites. We characterize the AdEx circuit extensions and exemplify how the interplay between passive and nonlinear active signal processing enhances the computational capabilities of single (but structured) on-chip neurons.


Subject(s)
Models, Neurological , Action Potentials/drug effects , Calcium/pharmacology , Dendrites/drug effects , Dendrites/physiology , N-Methylaspartate/pharmacology , Neurons/physiology , Sodium/pharmacology , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL
...