Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(2)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38275691

ABSTRACT

Grapevine roots, as a side-stream of a vineyard, are a sustainable resource for the recovery of oligomeric stilbenoids, such as the bioactive r-viniferin. The aim of this study is to evaluate an in silico-supported method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS), for selection of environmentally friendly natural deep eutectic solvents (NADES) with regard to the extraction of grapevine roots. The most suitable NADES system for ultrasonic-assisted extraction of r-viniferin was choline chloride/1,2-propanediol. The optimal extraction parameters for r-viniferin were determined using single-factor experiments as follows: choline chloride/1,2-propanediol 1/2 mol/mol, 10 wt% H2O, biomass/NADES ratio 1/10 g/g, and 10 min extraction time. Under optimized conditions, the extraction yield of r-viniferin from grapevine roots reached 76% of the total r-viniferin content. Regarding stability, stilbenoids in choline chloride/1,2-propanediol remained stable during 128 days of storage at ambient temperature. However, fructose/lactic acid-based NADES were observed to degrade stilbenoids; therefore, the removal of the NADES will be of interest, with a suitable method implemented using Amberlite® XAD-16N resin. As green solvents, the NADES have been used as effective and environmentally friendly extractants of stilbenoid-containing extracts from grapevine roots for potential applications in the cosmetic and pharmaceutical industry or as nutraceuticals in the food industry.

2.
Foods ; 12(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38002241

ABSTRACT

Grapevine canes are an important source of bioactive compounds, such as stilbenoids. This study aimed to evaluate an in silico method, based on the Conductor-like Screening Model for Real Solvents (COSMO-RS) to isolate stilbenoids from a grapevine cane extract by offline heart-cut high-performance countercurrent chromatography (HPCCC). For the following extraction of resveratrol and ε-viniferin from grapevine canes, natural deep eutectic solvents (NADES) were used as an environmentally friendly alternative to the traditionally used organic solvents. In order to evaluate a variety of combinations of hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) for the targeted extraction of stilbenoids, COSMO-RS was applied. In particular, ultrasonic-assisted extraction using a solvent mixture of choline chloride/1,2-propanediol leads to higher extraction yields of resveratrol and ε-viniferin. COSMO-RS calculations for NADES extraction combined with HPCCC biphasic solvent system calculations are a powerful combination for the sustainable extraction, recovery, and isolation of natural products. This in silico-supported workflow enables the reduction of preliminary experimental tests required for the extraction and isolation of natural compounds.

3.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446775

ABSTRACT

Peanut hulls (Arachis hypogaea, Leguminosae), which are a side stream of global peanut processing, are rich in bioactive flavonoids such as luteolin, eriodictyol, and 5,7-dihydroxychromone. This study aimed to isolate these flavonoid derivatives by liquid-liquid chromatography with as few steps as possible. To this end, luteolin, eriodictyol and 5,7-dihydroxychromone were isolated from peanut hulls using two different techniques, high-performance countercurrent chromatography (HPCCC) and fast-centrifugal partition chromatography (FCPC). The suitability of the biphasic solvent system composed of n-hexane/ethyl acetate/methanol/water (1.0/1.0/1.0/1.5; v/v/v/v) was determined by the Conductor like Screening Model for Real Solvents (COSMO-RS), which allowed the partition ratio KD-values of the three main flavonoids to be calculated. After a one-step HPCCC separation of ~1000 mg of an ethanolic peanut hull extract, 15 mg of luteolin and 8 mg of eriodictyol were isolated with purities over 96%. Furthermore, 3 mg of 5,7-dihydroxychromone could be isolated after purification by semi-preparative reversed-phase liquid chromatography (semi-prep. HPLC) in purity of over 99%. The compounds were identified by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectroscopy (NMR).


Subject(s)
Countercurrent Distribution , Flavonoids , Countercurrent Distribution/methods , Solvents/chemistry , Flavonoids/analysis , Arachis , Luteolin/analysis , Plant Extracts/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
4.
Molecules ; 27(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36080146

ABSTRACT

High-performance countercurrent chromatography (HPCCC) was used for the target-guided isolation of precursors of 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) from Riesling wine. In separated HPCCC fractions of an Amberlite® XAD®-2 extract obtained from a German Riesling, TDN-generating fractions were identified by the acid-catalyzed hydrolysis of the progenitors at pH 3.0 and subsequent HS-GC-MS/MS analysis. The presence of multiple TDN-generating precursors in Riesling wine could be confirmed. From polar HPCCC fractions (11-13 and 14-16), 3,4-dihydroxy-7,8-dihydro-ß-ionone 3-O-rutinoside and 3,4-dihydroxy-7,8-dihydro-ß-ionone 3-O-ß-d-glucopyranoside were isolated as major TDN-precursors at a sufficient amount for structure elucidation by NMR spectroscopic studies. In the medium polar HPCCC factions (27-35), enzymatic hydrolysis liberated the aglycones 3-hydroxy-ß-ionone and 3-hydroxy-TDN in minor amounts. In further less polar TDN-generation fractions (36-44 and 45-50), glycosidic progenitors were absent; instead, a minor TDN formation most likely from non-conjugated constituents was observed.


Subject(s)
Wine , Countercurrent Distribution , Naphthalenes/analysis , Tandem Mass Spectrometry , Wine/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...