Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(8)2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30995768

ABSTRACT

Transition metal hexacyanoferrate/microporous activated carbon composites were obtained using a simple successive impregnation approach. The effect of metal type (nickel, indium, or copper), and the carbon oxidation on the composite characteristics (porosity, metal structure, and particle size), as well as on the removal efficiency of cesium from aqueous solution was investigated. Successful formation of the desired metal hexacyanoferrate phase was achieved and the size of the metallic nanoparticles and their dispersion in the carbon network was found to depend on the metal type, with the indium and nickel-based materials exhibiting the smallest particle size distribution (< 10 nm). Adsorption tests performed under batch conditions demonstrate that the copper hexacyanoferrate/activated carbon composite present the highest cesium removal capacity from aqueous solution (74.7 mg·g-1) among the three studied metal-based nanocomposites. The carbon oxidation treatment leads to the increase in the number of functional groups to the detriment of the porosity but allows for an improvement in the Cs adsorption capacity. This indicates that the Cs adsorption process is governed by the carbon surface chemistry and not its porosity. Moreover, combining oxidized carbon support with copper hexacyanoferrate induces the highest cesium adsorption capacity (101.5 mg·g-1). This could be related to synergistic effects through two absorption mechanisms, i.e., a cation exchange mechanism of Cs with the metallic hexacyanoferrate phase and Cs adsorption via carbon oxygen surface groups, as demonstrated using X-ray photoelectron spectroscopy (XPS) analyses.

2.
Chemphyschem ; 19(11): 1371-1381, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29537646

ABSTRACT

Copper-supported mesoporous carbon nanocatalysts (Cu/FDU-15) were synthesized using an easy and convenient one-pot soft-template method for low-overvoltage CO2 electroreduction. TEM imaging revealed the presence of large Cu nanoparticles (diameter 140 nm) with Cu2 O nanoparticles (16 nm) as an additional phase. From the electron tomography observations, we found that the copper particles were placed inside and on the exterior surface of the porous FDU-15 support, providing an accessible surface for electrocatalytic reactions. CO2 electrolyses showed that the mesostructured Cu/FDU-15-350 cathode materials were active towards CO2 conversion to formic acid with 22 % Faradaic efficiency at a remarkably low overpotential of 290 mV, hydrogen being the only side-product. The catalyst's activity correlates to the calculated metallic surface area, as determined from a geometrical model, confirming that the mesoporous channels act as a diffusion path for the CO2 molecule, and that the whole Cu surface is accessible to CO2 , even if particles are entrapped in the carbon matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...