Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3762-3765, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946693

ABSTRACT

Only thin-film technology can satisfy the requirements of high spatial selectivity at high-channel-count electrode array designs by simultaneously good conformability to the targeted tissue through mechanical flexibility enriching future applications of functional neural stimulation. However, caused by the high impact of the microstructure on the mechanical and electrochemical film properties, varying fabrication processes of the same thin-film makes the difference between acute and chronic long-term stable electrodes. The influence of standard clinical electrical pulsing on flexible polyimide-based thin-film platinum electrodes for neuroprostheses, either sputter deposited or evaporated, and different diameters was assessed and compared. The electrochemical and morphological analysis showed a higher corrosion susceptibility and electrochemical degradation for the sputter deposited platinum electrodes with even total failures of smaller diameters. In contrast, the evaporated thin-films provided itself as more stable and reliable metallization with also smaller electrodes keeping their film integrity intact over the experimental period, -appearing to be the preferable material for improving thin-film electrodes' longevity.


Subject(s)
Electrodes , Neurons , Platinum , Electric Stimulation
2.
Nanoscale ; 9(19): 6436-6447, 2017 May 18.
Article in English | MEDLINE | ID: mdl-28463371

ABSTRACT

The limited performance of platinum-based electrocatalysts for glucose electrooxidation is a major concern for glucose fuel cells, since glucose electrooxidation is characterized by slow reaction kinetics and low diffusion coefficient. Here, the presented graphene-supported platinum-based hierarchical nanostructures attain highly enhanced electrocatalytic activity towards glucose oxidation. Platinum nanoparticles electrodeposited on graphene support retain mechanical stability and act as junctions allowing a reliable, smooth and dense growth of platinum nanowires with extremely small diameters (>10 nm) on graphene. The electrode's surface roughness was increased by factors up to 4000 to the geometrical surface area enabling maximized exploitation of the electrocatalytic activity of platinum and efficient electron transfer between nanowires and the substrate. The unique three-dimensional geometry of these hierarchical nanostructures has a significant impact on their catalytic performance offering short diffusional paths for slow glucose species, thus, mass transport limitations are optimized leading to lower polarization losses. This was examined by galvanostatic measurements of the operation as anodes in glucose half-cells under conditions corresponding to implantable glucose fuel cells. The presented hierarchical nanostructures show remarkably enhanced catalytic performance for glucose electrooxidation, i.e. a negatively shifted open circuit potential of -580 mV vs. Ag/AgCl, hence, representing appropriate electrocatalysts for use as anodes in glucose fuel cells. In combination with a non-metal N-doped graphene cathode, a cell potential of 0.65 V was achieved at a galvanostatic load of 17.5 µA cm-2 which noticeably surpasses the performance of state of the art catalysts for the aforementioned operation conditions.

3.
Analyst ; 141(21): 6073-6079, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27747319

ABSTRACT

Here, we present a novel approach to increase the degree of miniaturization as well as the sensitivity of biosensor platforms by the optimization of microfluidic stop-flow techniques independent of the applied detection technique (e.g. electrochemical or optical). The readout of the labeled bioassays, immobilized in a microfluidic channel, under stop-flow conditions leads to a rectangular shaped peak signal. Data evaluation using the peak height allows for a high level miniaturization of the channel geometries. To study the main advantages and limitations of this method by numerical simulations, a universally applicable model system is introduced for the first time. Consequently, proof-of-principle experiments were successfully performed with standard and miniaturized versions of an electrochemical biosensor platform utilizing a repressor protein-based assay for tetracycline antibiotics. Herein, the measured current peak heights are the same despite the sextuple reduction of the channel dimensions. Thus, this results in a 22-fold signal amplification compared to the constant flow measurements in the case of the miniaturized version.


Subject(s)
Biosensing Techniques , Microfluidic Analytical Techniques , Miniaturization , Humans , Microfluidics , Tetracyclines/analysis , Tetracyclines/blood
4.
Lab Chip ; 15(22): 4314-21, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26394820

ABSTRACT

In this paper, we present a novel approach to enhance the sensitivity of microfluidic biosensor platforms with self-assembled magnetic bead chains. An adjustable, more than 5-fold sensitivity enhancement is achieved by introducing a magnetic field gradient along a microfluidic channel by means of a soft-magnetic lattice with a 350 µm spacing. The alternating magnetic field induces the self-assembly of the magnetic beads in chains or clusters and thus improves the perfusion and active contact between the analyte and the beads. The soft-magnetic lattices can be applied independent of the channel geometry or chip material to any microfluidic biosensing platform. At the same time, the bead-based approach achieves chip reusability and shortened measurement times. The bead chain properties and the maximum flow velocity for bead retention were validated by optical microscopy in a glass capillary. The magnetic actuation system was successfully validated with a biotin-streptavidin model assay on a low-cost electrochemical microfluidic chip, fabricated by dry-film photoresist technology (DFR). Labelling with glucose oxidase (GOx) permits rapid electrochemical detection of enzymatically produced H2O2.


Subject(s)
Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Magnetic Fields , Microfluidic Analytical Techniques/instrumentation , Microspheres , Glucose Oxidase/analysis , Glucose Oxidase/metabolism , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Streptavidin/chemistry
5.
Biosens Bioelectron ; 65: 354-9, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25461181

ABSTRACT

A new electrochemical sensor system for reliable and continuous detection of superoxide radical release from cell culture was developed utilizing direct oxidation of superoxide on polymer covered gold microelectrodes. Direct superoxide oxidation was demonstrated to provide robust measurement principle for sensitive and selective reactive oxygen species (ROS) quantification without the need for biocomponent supported conversion. Sensor performance was investigated by using artificial enzymatic superoxide production revealing a sensitivity of 2235AM(-1)m(-2). An electrode protection layer with molecular weight cut-off property from adsorbed linear branched polyethylenimine was successfully introduced for long term and selectivity improvement. Thin-film based sensor chip fabrication with implemented three-electrode setup and full integration into the technological platform Sensing Cell Culture Flask was described. Cell culturing directly on-chip and free radical release by phorbol-12-myristate-13-acetate (PMA) stimulation was demonstrated using T-47D human breast cancer carcinoma cell model. Transient extracellular superoxide production upon stimulation was successfully observed from amperometric monitoring. Signal inhibition from scavenging of extracellular superoxide by specific superoxide dismutase (SOD) showed the applicability for selective in vitro ROS determination. The results confirm the possibility of direct superoxide oxidation, with exclusion of the main interfering substances uric acid and hydrogen peroxide. This offers new insights into the development of reliable and robust ROS sensors.


Subject(s)
Biosensing Techniques/instrumentation , Breast Neoplasms/metabolism , Cell Culture Techniques/instrumentation , Electrochemical Techniques/instrumentation , Superoxides/analysis , Breast/metabolism , Cell Line, Tumor , Female , Gold/chemistry , Humans , Lab-On-A-Chip Devices , Microelectrodes , Oxidation-Reduction , Polymers/chemistry , Superoxides/metabolism
6.
Phys Chem Chem Phys ; 16(18): 8392-9, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24664444

ABSTRACT

Platinum surfaces play a decisive role in catalysis in sensors, fuel cells, solar cells and other applications like neuronal stimulation and recording. Technical advances in nanotechnology contributed tremendously to the progress in these fields. A fundamental understanding of the chemical and physical interactions between the nanostructured surfaces and electrolytes is essential, but was barely investigated up to now. In this article, we present a wet-chemical process for the deposition of nanostructures on polycrystalline platinum surfaces. The electrochemically active surface area was increased by a factor of over 1000 times with respect to the geometrical surface. The influence of the nanostructures was examined in different acidic, alkaline, and neutral electrolytes. Comparing cyclic voltammograms of nanostructured and planar polycrystalline platinum revealed new insights into the microenvironment at the electrode-electrolyte interface. The characteristic features of the cyclic voltammograms were altered in their shape and strongly shifted with respect to the applied potential. In neutral buffered and unbuffered electrolytes the water window was expanded from 1.4 V to more than 2 V. The shifts were interpreted as local pH-changes and exhausted buffer capacity in direct proximity of the electrode surface due to the strong release and binding of protons, respectively. These polarized electrodes induce significant changes in the electrochemical potential of the electrolyte due to the high roughness of their surface. The electrochemical phenomena and the observed voltage shifts are crucial for the understanding of the basic mechanism at nanostructured electrodes and mandatory for designing fuel cells, sensors and many other devices.


Subject(s)
Nanostructures/chemistry , Platinum/chemistry , Electrochemical Techniques , Electrodes , Electrolytes/chemistry , Hydrogen-Ion Concentration , Potassium Chloride/chemistry , Sulfuric Acids/chemistry , Surface Properties , Water/chemistry
7.
Cell Prolif ; 47(2): 180-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24460744

ABSTRACT

OBJECTIVES: Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. MATERIALS AND METHODS: T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. RESULTS: Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. CONCLUSIONS: Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor.


Subject(s)
Biosensing Techniques/instrumentation , Oxygen Consumption , Oxygen/analysis , Brain Neoplasms/metabolism , Breast Neoplasms/metabolism , Cell Culture Techniques/instrumentation , Cell Hypoxia , Cell Line, Tumor , Cell Respiration , Equipment Design , Female , Humans , MCF-7 Cells , Materials Testing , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...