Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Immunol ; 188(3): 326-332, 2017 06.
Article in English | MEDLINE | ID: mdl-28236292

ABSTRACT

The advent of next-generation sequencing (NGS) and 'omic' technologies has revolutionized the field of genetics, and its implementation in health care has the potential to realize precision medicine. Primary immunodeficiencies (PID) are a group of rare diseases which have benefited from NGS, with a massive increase in causative genes identified in the past few years. Common variable immunodeficiency disorders (CVID) are a heterogeneous form of PID and the most common form of antibody failure in children and adults. While a monogenic cause of disease has been identified in a small subset of CVID patients, a genomewide association study and whole genome sequencing have found that, in the majority, a polygenic cause is likely. Other NGS technologies such as RNA sequencing and epigenetic studies have contributed further to our understanding of the contribution of altered gene expression in CVID pathogenesis. We believe that to unravel further the complexities of CVID, a multi-omic approach, combining DNA sequencing with gene expression, methylation, proteomic and metabolomics data, will be essential to identify novel disease-associated pathways and therapeutic targets.


Subject(s)
Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Genomics/methods , Sequence Analysis/methods , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Precision Medicine
2.
Clin Exp Immunol ; 178(3): 470-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25079909

ABSTRACT

Mutations in the X-linked inhibitor of apoptosis (XIAP) gene have been associated with XLP-like disease, including recurrent Epstein-Barr virus (EBV)-related haemophagocytic lymphohystiocytosis (HLH), but the immunopathogenic bases of EBV-related disease in XIAP deficiency is unknown. We present the first analysis of EBV-specific T cell responses in functional XIAP deficiency. In a family of patients with a novel mutation in XIAP (G466X) leading to a late-truncated protein and varying clinical features, we identified gradual hypogammaglobulinaemia and large expansions of T cell subsets, including a prominent CD4(+) CD8(+) population. Extensive ex-vivo analyses showed that the expanded T cell subsets were dominated by EBV-specific cells with conserved cytotoxic, proliferative and interferon (IFN)-γ secretion capacity. The EBV load in blood fluctuated and was occasionally very high, indicating that the XIAP(G466X) mutation could impact upon EBV latency. XIAP deficiency may unravel a new immunopathogenic mechanism in EBV-associated disease.


Subject(s)
Herpesvirus 4, Human/immunology , Immunologic Memory , Mutation , T-Lymphocytes/immunology , X-Linked Inhibitor of Apoptosis Protein/genetics , Cells, Cultured , Haplotypes , Humans , Interferon-gamma/biosynthesis , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...