Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Molecules ; 28(7)2023 Mar 25.
Article in English | MEDLINE | ID: mdl-37049703

ABSTRACT

This systematic study aimed at finding a correlation between molecular structure, solubility, self-assembly, and electronic properties of a homological series of N-alkylated naphthalene diimides (NDIs). NDIs are known for their n-type carrier mobility and, therefore, have potential in the field of organic electronics, photovoltaics, and sensors. For the purpose of this study, nine symmetrical N,N'-dialkylated naphthalene diimides (NDIC3-NDIC11) were synthesized in the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with alkylamines ranging from propyl- to undecyl-. The NDIs were characterized by spectroscopic (NMR, UV-Vis, FTIR), microscopic, and thermal methods (TGA and DSC), and X-ray diffraction (XRD). Our experimental study, extensively referring to findings reported in the literature, indicated that the NDIs revealed specific trends in spectroscopic and thermal properties as well as solubility and crystal morphology. The solubility in good solvents (chloroform, toluene, dichlorobenzene) was found to be the highest for the NDIs substituted with the medium-length alkyl chains (NDIC5-NDIC8). Systematic FTIR and XRD studies unraveled a distinct parity effect related to the packing of NDI molecules with odd or even numbers of methylene groups in the alkyl substituents. The NDIs with an even number of methylene groups in the alkyl substituents revealed low-symmetry (P1-) triclinic packing, whereas those with an odd number of carbon atoms were generally monoclinic with P21/c symmetry. The odd-even parity effect also manifested itself in the overlapping of the NDIs' aromatic cores and, hence, the π-π stacking distance (dπ-π). The odd-numbered NDIs generally revealed slightly smaller dπ-π values then the even-numbered ones. Testing the NDIs using standardized field-effect transistors and unified procedures revealed that the n-type mobility in NDIC6, NDIC7, and NDIC8 was 10- to 30-fold higher than for the NDIs with shorter or longer alkyl substituents. Our experimental results indicate that N,N'-alkylated NDIs reveal an optimum range of alkyl chain length in terms of solution processability and charge transport properties.

2.
Front Chem ; 9: 703710, 2021.
Article in English | MEDLINE | ID: mdl-34422763

ABSTRACT

Herein we report on fabrication and properties of organic field-effect transistors (OFETs) based on the spray-coated films of N,N'-dioctyl naphthalene diimide (NDIC8) doped with 2.4 wt% of poly (3-hexylthiophene) (P3HT). OFETs with the untreated NDIC8:P3HT films revealed electron conductivity [µe* = 5 × 10-4 cm2×(Vs)-1]. After the annealing in chloroform vapor the NDIC8:P3HT films revealed the hole transport only [µh* = 0.9 × 10-4 cm2×(Vs)-1]. Due to the chemical nature and energy levels, the hole transport was not expected for NDIC8-based system. Polarized optical- and scanning electron microscopies indicated that the solvent vapor annealing of the NDIC8:P3HT films caused a transition of their fine-grained morphology to the network of branched, dendritic crystallites. Grazing incidence wide-angle X-ray scattering studies indicated that the above transition was accompanied by a change in the crystal structure of NDIC8. The isotropic crystal structure of NDIC8 in the untreated film was identical to the known crystal structure of the bulk NDIC8. After the solvent annealing the crystal structure of NDIC8 changed to a not-yet-reported polymorph, that, unlike in the untreated film, was partially oriented with respect to the OFET substrate.

3.
Polymers (Basel) ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187323

ABSTRACT

Organic electronics became an attractive alternative for practical applications in complementary logic circuits due to the unique features of organic semiconductors such as solution processability and ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched from electron to hole domination upon processing and post-treatment. Low molecular weight n-type N,N'-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature, and thermal annealing on thin film morphology was performed using atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2 crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top of the blend film, leading to the switch from electron to hole transport in field-effect transistors.

4.
Langmuir ; 34(44): 13375-13386, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30350703

ABSTRACT

We have investigated the formation of lamellar crystals of poly(vinylidene fluoride) (PVDF) in the presence of oriented clay particles with different aspect ratios (ARs) and surface properties. Hot-melt screw extrusion of PVDF with 5 wt % of montmorillonite (AR ≈ 12) or fluoromica (AR ≈ 27) resulted in formation of phase-separated blends. Replacing the clays with their organoclay derivatives, organomontmorillonite or organofluoromica, resulted in the corresponding intercalated nanocomposites. The organoclays induced formation of polar ß- and γ-polymorphs of PVDF in contrast to the α-polymorph, which dominates in the pure PVDF and the PVDF/clay blends. Solid-state nuclear magnetic resonance revealed that the content of the α-phase in the nanocomposites was never higher than 7% of the total crystalline phase, whereas the ß/γ mass ratio was close to 1:2, irrespective of the AR or crystallization conditions. X-ray diffraction showed that the oriented particles with a larger AR caused orientation of the polar lamellar crystals of PVDF. In the presence of the organofluoromica, PVDF formed a chevron-like lamellar nanostructure, where the polymer chains are extended along the extrusion direction, whereas the lamellar crystals were slanted from normal to the extrusion direction. Time-resolved X-ray diffraction experiments allowed the identification of the formation mechanism of the chevron-like nanostructure.

5.
Langmuir ; 33(17): 4189-4197, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28383267

ABSTRACT

Since the interfacial order of conjugated polymers plays an essential role for the performance of field-effect transistors, comprehensive understanding on the charge carrier transport in ultrathin semiconducting films below thicknesses of 10 nm is required for the development of transparent and flexible organic electronics. In this study, ultrathin films based on poly(3-hexylthiophene) as conjugated polymer model system with a thickness range from single monolayer up to several multilayers are investigated in terms of microstructure evolution and electrical properties of different molecular weights. Interestingly, a characteristic leap in field-effect mobility is observed for films with thickness greater than four layers. This threshold mobility regarding film thickness is attributed to the transition from 2D to 3D charge carrier transport along with an increased size of the P3HT aggregates in the upper layers of the film. These results disclose key aspects on the role of the film interlayer on the charge carrier transport through conjugated polymers in transistors.

6.
Photochem Photobiol ; 93(2): 558-568, 2017 03.
Article in English | MEDLINE | ID: mdl-28052361

ABSTRACT

The TiO2 /beta-SiC nanocomposites containing 0-25 wt. % of beta-SiC were synthesized by the sol-gel method and tested in the photodegradation of methylene blue and methyl orange water solutions. With the increase in SiC content, only a slight decrease in energy band gap was observed (3.19-3.12 eV), together with significant increase in the surface area of the catalysts (42.7-80.4 m2 g-1 ). In the synthesized material, the anatase phase of TiO2 was present in the form of small agglomerates resulting from the mechanical mixing process. In the process conditions (catalyst concentration 0.5 g L-1 , initial dye concentration 100 ppm, light source 100 W UV-Vis lamp), we have observed no signs of catalyst deactivation. The significantly higher photodegradation activity of methylene blue than methyl orange can be attributed to the preferable pH of the solution compared to pHPZC and the cationic character of the first dye. In case of methyl orange, pH process conditions substantially limit the contact of the catalyst with the dye, as negatively charged surface of the catalysts repels the dissociated anionic dye molecules.

7.
Langmuir ; 30(39): 11650-9, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25216210

ABSTRACT

We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.


Subject(s)
Immobilized Proteins/chemistry , Silicates/chemistry , Adsorption , Animals , Gold/chemistry , Hydrogen-Ion Concentration , Quartz Crystal Microbalance Techniques , Silicon/chemistry , Surface Properties
8.
Nanoscale ; 6(12): 6301-14, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24733615

ABSTRACT

In organic field-effect transistors (OFETs) the electrical characteristics of polymeric semiconducting materials suffer from the presence of structural/morphological defects and grain boundaries as well as amorphous domains within the film, hindering an efficient transport of charges. To improve the percolation of charges we blend a regioregular poly(3-hexylthiophene) (P3HT) with newly designed N = 18 armchair graphene nanoribbons (GNRs). The latter, prepared by a bottom-up solution synthesis, are expected to form solid aggregates which cannot be easily interfaced with metallic electrodes, limiting charge injection at metal-semiconductor interfaces, and are characterized by a finite size, thus by grain boundaries, which negatively affect the charge transport within the film. Both P3HT and GNRs are soluble/dispersible in organic solvents, enabling the use of a single step co-deposition process. The resulting OFETs show a three-fold increase in the charge carrier mobilities in blend films, when compared to pure P3HT devices. This behavior can be ascribed to GNRs, and aggregates thereof, facilitating the transport of the charges within the conduction channel by connecting the domains of the semiconductor film. The electronic characteristics of the devices such as the Ion/Ioff ratio are not affected by the addition of GNRs at different loads. Studies of the electrical characteristics under illumination for potential use of our blend films as organic phototransistors (OPTs) reveal a tunable photoresponse. Therefore, our strategy offers a new method towards the enhancement of the performance of OFETs, and holds potential for technological applications in (opto)electronics.

9.
ACS Appl Mater Interfaces ; 5(22): 11554-62, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24143919

ABSTRACT

In this study, the nanomorphology of fluorenyl hexa-peri-hexabenzocoronene:[6,6]-phenyl C61-butyric acid methyl ester (FHBC:PC61BM) absorber layers of organic solar cells was investigated. Different electron microscopical techniques, atomic force microscopy, and grazing incidence wide-angle X-ray scattering were applied for a comprehensive nanomorphology analysis. The development of the nanomorphology upon sample annealing and the associated change of the device performance were investigated. It was shown that the annealing process enhances the phase separation and therefore the bulk heterojunction structure. Due to π-π stacking, the FHBC molecules assemble into columnar stacks, which are already present before annealing. While the nonannealed sample consists of a mixture of homogeneously distributed PC61BM molecules and FHBC stacks with a preferential in-plane stack orientation, crystalline FHBC precipitates occur in the annealed samples. These crystals, which consist of hexagonal arranged FHBC stacks, grow with increased annealing time. They are distributed homogeneously over the whole volume of the absorber layer as revealed by electron tomography. The FHBC stacks, whether in the two phase mixture or in the pure crystalline precipitates, exhibit an edge-on orientation, according to results from grazing incidence wide-angle X-ray scattering (GIWAXS), dark-field transmission electron microscopy (DF TEM) imaging and selective area electron diffraction (SAED). The best solar cell efficiencies were obtained after 20 or 40 s sample annealing. These annealing times induce an optimized degree of phase separation between donor and acceptor material.

10.
Angew Chem Int Ed Engl ; 51(44): 11068-72, 2012 Oct 29.
Article in English | MEDLINE | ID: mdl-23038051

ABSTRACT

To tilt or not to tilt: The crystal structure for bulk P3HT (phase I) was determined by "multi-technique crystallography", which combines X-ray diffraction, solid-state NMR spectroscopy, and DFT calculations. The results showed that this semiconducting polymer crystallizes in the monoclinic space group P2(1)/c with nontilted π-stacks at a distance of 3.9 Š(see picture).


Subject(s)
Polymers/chemistry , Thiophenes/chemistry , Calorimetry, Differential Scanning , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Semiconductors
11.
J Colloid Interface Sci ; 374(1): 135-40, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22405581

ABSTRACT

In the study we demonstrate a method to obtain stable, exfoliated montmorillonite-protein complexes by adsorption of the proteins extracted from hen-egg albumen. Analysis of the process by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed that the complexes are formed by sequential adsorption of ovotransferrin, ovalbumins, ovomucoid and lysozyme on the surface of the silicate. Structural studies performed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the adsorption of ovotransferrin and albumins is accompanied by disintegration of clay stacks into discrete platelets. Further analysis by dynamic light scattering (DLS) revealed that at protein to silicate weight ratios exceeding 20, the synergistic adsorption of albumen components leads to reaggregation of silicate platelets into disordered, microgel-like particles. By means of DLS it was found that exfoliation predominantly leads to formation of particles with average hydrodynamic radii (R(h)) of 0.19 µm while their aggregation causes formation of particles having R(h) in of approx. 0.5 µm and larger.


Subject(s)
Bentonite/chemistry , Biocompatible Materials/chemistry , Egg Proteins/chemistry , Adsorption , Animals , Chickens , Eggs , Electrophoresis, Polyacrylamide Gel , Light , Microscopy, Electron, Transmission , Nanoparticles , Particle Size , Solutions , X-Ray Diffraction
12.
J Am Chem Soc ; 134(9): 4015-8, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22353165

ABSTRACT

Probing the role of the first monolayer in the evolution of the film polymer microstructure is essential for the fundamental understanding of the charge carrier transport in polymeric field-effect transistors (FETs). The monolayer and its subsequent microstructure of a conjugated polymer [poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene), PBTTT] film were fabricated via solution deposition by tuning the dip-coating speed and were then studied as accumulation and transporting layers in FETs. Investigation of the microstructure of the layers prepared at different coating velocities revealed that the monolayer serves as an important base for further development of the film. Significant improvement of the charge carrier transport occurs only at a critical multilayer network density that establishes the required percolation pathways for the charge carriers. Finally, at a low dip-coating speed, the polymer chains are uniaxially oriented, yielding pronounced structural anisotropy and high charge carrier mobilities of 1.3 cm(2) V(-1) s(-1) in the alignment direction.

13.
Chem Commun (Camb) ; 48(10): 1562-4, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22114763

ABSTRACT

An enhancement in charge transport capacity in a poly(3-hexylthiophene) (P3HT) semicrystalline film, up to field-effect mobilities approaching 0.1 cm(2) V(-1) s(-1), has been achieved by co-deposition with a small molecule, i.e. 5,5'-bis(4-n-hexylphenyl)-2,2'-bithiophene (dH-PTTP), forming highly ordered crystals bridging large polymeric domains.


Subject(s)
Membranes, Artificial , Thiophenes/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...