Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naturwissenschaften ; 100(3): 263-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23354758

ABSTRACT

The biogenetic law posits that the ontogeny of an organism recapitulates the pattern of evolutionary changes. Morphological evidence has offered some support for, but also considerable evidence against, the hypothesis. However, biogenetic law in behavior remains underexplored. As physical manifestation of behavior, spider webs offer an interesting model for the study of ontogenetic behavioral changes. In orb-weaving spiders, web symmetry often gets distorted through ontogeny, and these changes have been interpreted to reflect the biogenetic law. Here, we test the biogenetic law hypothesis against the alternative, the optimal foraging hypothesis, by studying the allometry in Leucauge venusta orb webs. These webs range in inclination from vertical through tilted to horizontal; biogenetic law predicts that allometry relates to ontogenetic stage, whereas optimal foraging predicts that allometry relates to gravity. Specifically, pronounced asymmetry should only be seen in vertical webs under optimal foraging theory. We show that, through ontogeny, vertical webs in L. venusta become more asymmetrical in contrast to tilted and horizontal webs. Biogenetic law thus cannot explain L. venusta web allometry, but our results instead support optimization of foraging area in response to spider size.


Subject(s)
Feeding Behavior/physiology , Animals , Biological Evolution , Body Size , Spiders/physiology
2.
Am Nat ; 169(4): 534-42, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17262697

ABSTRACT

In natural communities, species are embedded in networks of direct and indirect interactions. Most studies on indirect interactions have focused on how they affect predator-prey or competitive relationships. However, it is equally likely that indirect interactions play an important structuring role in mutualistic relationships in a natural community. We demonstrate experimentally that on a small spatial scale, dense thickets of endemic Pandanus plants have a strong positive trait-mediated indirect effect on the reproduction of the declining endemic Mauritian plant Trochetia blackburniana. This effect is mediated by the endemic gecko Phelsuma cepediana moving between Pandanus thickets, a preferred microhabitat, and nearby T. blackburniana plants, where it feeds on nectar and pollinates the plants. Our findings emphasize the importance of considering plant-animal interactions such as pollination at relatively small spatial scales in both basic ecological studies and applied conservation management.


Subject(s)
Ecosystem , Lizards/physiology , Malvaceae/physiology , Pandanaceae/physiology , Symbiosis , Analysis of Variance , Animals , Feeding Behavior/physiology , Mauritius , Observation , Pollen , Population Dynamics , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...