Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(22): 32183-32199, 2024 May.
Article in English | MEDLINE | ID: mdl-38649602

ABSTRACT

Lotic ecosystems are sources of greenhouse gases (GHGs) to the atmosphere, but their emissions are uncertain due to longitudinal GHG heterogeneities associated with point source pollution from anthropogenic activities. In this study, we quantified summer concentrations and fluxes of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and dinitrogen (N2), as well as several water quality parameters along the Rhine River and the Mittelland Canal, two critical inland waterways in Germany. Our main objectives were to compare GHG concentrations and fluxes along the two ecosystems and to determine the main driving factors responsible for their longitudinal GHG heterogeneities. The results indicated that the two ecosystems were sources of GHG fluxes to the atmosphere, with the Mittelland Canal being a hotspot for CH4 and N2O fluxes. We also found significant longitudinal GHG flux discontinuities along the mainstems of both ecosystems, which were mainly driven by divergent drivers. Along the Mittelland Canal, peak CO2 and CH4 fluxes coincided with point pollution sources such as a joining river tributary or the presence of harbors, while harbors and in-situ biogeochemical processes such as methanogenesis and respiration mainly explained CH4 and CO2 hotspots along the Rhine River. In contrast to CO2 and CH4 fluxes, N2O longitudinal trends along the two lotic ecosystems were better predicted by in-situ parameters such as chlorophyll-a concentrations and N2 fluxes. Based on a positive relationship with N2 fluxes, we hypothesized that in-situ denitrification was driving N2O hotspots in the Canal, while a negative relationship with N2 in the Rhine River suggested that coupled biological N2 fixation and nitrification accounted for N2O hotspots. These findings stress the need to include N2 flux estimates in GHG studies, as it can potentially improve our understanding of whether nitrogen is fixed through N2 fixation or lost through denitrification.


Subject(s)
Environmental Monitoring , Greenhouse Gases , Rivers , Greenhouse Gases/analysis , Germany , Rivers/chemistry , Methane/analysis , Nitrous Oxide/analysis , Carbon Dioxide/analysis , Ecosystem , Air Pollutants/analysis
2.
J Environ Manage ; 342: 118276, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37276627

ABSTRACT

High N-fertilizer applications to conventional vegetable production systems are associated with substantial emissions of NH3, a key substance that triggers haze pollution and ecosystem eutrophication and thus, causing considerable damage to human and ecosystem health. While N fertilization effects on NH3 volatilization from cereal crops have been relatively well studied, little is known about the magnitude and yield-scaled emissions of NH3 from vegetable systems. Here we report on a 2-year field study investigating the effect of various types and rates of fertilizer application on NH3 emissions and crop yields for a pepper-lettuce-cabbage rotation system in southwest China. Our results show that both NH3 emissions and direct emission factors of applied N varied largely across seasons over the 2-year period, highlighting the importance of measurements spanning entire cropping years. Across all treatments varying from solely applying urea fertilizers to only using organic manures, annual NH3 emissions ranged from 0.64 to 92.4 kg N ha-1 yr-1 (or 0.07-6.84 g N kg-1 dry matter), equivalent to 0.05-5.99% of the applied N. At annual scale, NH3 emissions correlated positively with soil δ15N values, indicating that soil δ15N may be used as an indicator for NH3 losses. NH3 emissions from treatments fertilized partially or fully with manure were significantly lower compared with the urea fertilized treatment, while vegetable yields remained unaffected. Moreover, full substitution of urea by manure as compared to the partial substitution further reduced the yield-scaled annual NH3 emissions by 79.0-92.4%. Across all vegetable seasons, there is a significant negative relationship between yield-scaled NH3 emissions and crop N use efficiency. Overall, our results suggest that substituting urea by manure and reducing total N inputs by 30-50% allows to reduce NH3 emissions without jeopardizing yields. Such a change in management provides a feasible option to achieve environmental sustainability and food security in conventional vegetable systems.


Subject(s)
Nitrogen , Vegetables , Humans , Agriculture/methods , Nitrous Oxide/analysis , Fertilizers/analysis , Manure , Ecosystem , Soil , Urea , China , Ammonia
3.
Nat Food ; 4(3): 236-246, 2023 03.
Article in English | MEDLINE | ID: mdl-37118263

ABSTRACT

Agricultural food production is a main driver of global greenhouse gas emissions, with unclear pathways towards carbon neutrality. Here, through a comprehensive life-cycle assessment using data from China, we show that an integrated biomass pyrolysis and electricity generation system coupled with commonly applied methane and nitrogen mitigation measures can help reduce staple crops' life-cycle greenhouse gas emissions from the current 666.5 to -37.9 Tg CO2-equivalent yr-1. Emission reductions would be achieved primarily through carbon sequestration from biochar application to the soil, and fossil fuel displacement by bio-energy produced from pyrolysis. We estimate that this integrated system can increase crop yield by 8.3%, decrease reactive nitrogen losses by 25.5%, lower air pollutant emissions by 125-2,483 Gg yr-1 and enhance net environmental and economic benefits by 36.2%. These results indicate that integrated biochar solutions could contribute to China's 2060 carbon neutrality objective while enhancing food security and environmental sustainability.


Subject(s)
Carbon , Greenhouse Gases , Crop Production , Nitrogen/analysis
4.
Nat Ecol Evol ; 5(12): 1582-1593, 2021 12.
Article in English | MEDLINE | ID: mdl-34545216

ABSTRACT

Many experiments have shown that biodiversity enhances ecosystem functioning. However, we have little understanding of how environmental heterogeneity shapes the effect of diversity on ecosystem functioning and to what extent this diversity effect is mediated by variation in species richness or species turnover. This knowledge is crucial to scaling up the results of experiments from local to regional scales. Here we quantify the diversity effect and its components-that is, the contributions of variation in species richness and species turnover-for 22 ecosystem functions of microorganisms, plants and animals across 13 major ecosystem types on Mt Kilimanjaro, Tanzania. Environmental heterogeneity across ecosystem types on average increased the diversity effect from explaining 49% to 72% of the variation in ecosystem functions. In contrast to our expectation, the diversity effect was more strongly mediated by variation in species richness than by species turnover. Our findings reveal that environmental heterogeneity strengthens the relationship between biodiversity and ecosystem functioning and that species richness is a stronger driver of ecosystem functioning than species turnover. Based on a broad range of taxa and ecosystem functions in a non-experimental system, these results are in line with predictions from biodiversity experiments and emphasize that conserving biodiversity is essential for maintaining ecosystem functioning.


Subject(s)
Biodiversity , Ecosystem , Animals , Plants , Tanzania
5.
Eur J Agron ; 128: None, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345158

ABSTRACT

The productivity of permanent temperate cut grasslands is mainly driven by weather, soil characteristics, botanical composition and management. To adapt management to climate change, adjusting the cutting dates to reflect earlier onset of growth and expansion of the vegetation period is particularly important. Simulations of cut grassland productivity under climate change scenarios demands management settings to be dynamically derived from actual plant development rather than using static values derived from current management operations. This is even more important in the alpine region, where the predicted temperature increase is twice as high as compared to the global or Northern Hemispheric average. For this purpose, we developed a dynamic management module that provides timing of cutting and manuring events when running the biogeochemical model LandscapeDNDC. We derived the dynamic management rules from long-term harvest measurements and monitoring data collected at pre-alpine grassland sites located in S-Germany and belonging to the TERENO monitoring network. We applied the management module for simulations of two grassland sites covering the period 2011-2100 and driven by scenarios that reflect the two representative concentration pathways (RCP) 4.5 and 8.5 and evaluated yield developments of different management regimes. The management module was able to represent timing of current management operations in high agreement with several years of field observations (r² > 0.88). Even more, the shift of the first cutting dates scaled to a +1 °C temperature increase simulated with the climate change scenarios (-9.1 to -17.1 days) compared well to the shift recorded by the German Weather Service (DWD) in the study area from 1991-2016 (-9.4 to -14.0 days). In total, the shift in cutting dates and expansion of the growing season resulted in 1-2 additional cuts per year until 2100. Thereby, climate change increased yields of up to 6 % and 15 % in the RCP 4.5 and 8.5 scenarios with highest increases mainly found for dynamically adapted grassland management going along with increasing fertilization rates. In contrast, no or only minor yield increases were associated with simulations restricted to fertilization rates of 170 kg N ha-1 yr-1 as required by national legislations. Our study also shows that yields significantly decreased in drought years, when soil moisture is limiting plant growth but due to comparable high precipitation and water holding capacity of soils, this was observed mainly in the RCP 8.5 scenario in the last decades of the century.

6.
Sci Total Environ ; 800: 149597, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34426336

ABSTRACT

Populations of rodents such as common vole (Microtus arvalis) can develop impressive soil bioturbation activities in grasslands. These burrowing and nesting activities highly impact soil physicochemical properties as well as vegetation coverage and diversity. Managed grasslands in livestock production regions receive significant amounts of slurry, commonly at high loads at the beginning of the vegetation period. However, nothing is known how the combination of vole bioturbation and slurry application may affect the fluxes of C and N trace gases from grasslands. Here we report on an in-situ experiment and supporting laboratory incubations carried out during the period March to May 2020 comparing C (CH4, CO2) and N (N2O, NO, NH3) trace gas fluxes from Lolium perenne and Trifolium repens dominated montane grasslands with and without vole bioturbation and with and without slurry application, whereby, with regard to the latter, we further differentiated between acidified and non-acidified slurry. Vole bioturbation significantly (p < 0.05) increased soil NO and NH3 emissions, while N2O fluxes were only significantly (p < 0.05) enhanced in vole affected grassland patches following slurry application (+17%). Effects of vole bioturbation on CH4 fluxes were non-significant, while slurry application significantly reduced CH4 uptake. Compared to applications of non-acidified slurry, application of acidified slurry significantly (p < 0.05) reduced NH3 volatilization by approx. 38% and 50%, for vole and non-vole affected grassland patches, respectively. A significant effect of acidified slurry application on soil NO emissions was only observed for vole affected grassland patches. Significant (p < 0.05) reductions in aboveground net primary productivity and reduced plant N uptake are likely the main mechanisms explaining the stimulation of gaseous N losses following slurry application. Long-term measurements are needed to better understand effects of vole bioturbation on grassland soil C and N cycling and ecosystem GHG balance.


Subject(s)
Grassland , Soil , Animals , Arvicolinae , Carbon Dioxide/analysis , Ecosystem , Methane , Nitrous Oxide/analysis
7.
Sci Total Environ ; 797: 149127, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34311350

ABSTRACT

It is a concern whether the effect of soil type on N2O emissions has to be considered for regional mitigation strategies and emission estimates in mountainous areas with inherent spatial heterogeneities of soil type. To date, there were few field experiments which investigated soil type effects on N2O emissions. Thus a 2-year field study was conducted to measure N2O emissions and soil environmental variables from three different soils that were formed from similar parental rock under the same climate. Seasonal N2O fluxes ranged from 0.18 to 0.40 kg N ha-1 for wheat seasons and 0.40 to 1.50 kg N ha-1 for maize seasons across different experimental soils. The intra- and inter-annual variations in N2O emissions were mainly triggered by temporal dynamics of soil temperature and moisture conditions. On average, seasonal N2O fluxes for acidic soils were significantly lower than for neutral and alkaline soils in cold-dry wheat seasons while significantly greater than for neutral and alkaline soils in warm-wet maize seasons. These determined differences of N2O emissions were mainly caused by differences of initial soil properties across different soils. Moreover, seasonal N2O fluxes were positively correlated with soil pH in wheat seasons, but negatively correlated in maize seasons. The temperature sensitivity coefficient (Q10) of soil N2O emissions for acidic soil (4.06) were significantly greater than those for neutral (1.82) and alkaline (1.15) soils. Overall, N2O emissions for acidic soils were not only higher than those for neutral and alkaline soils but also more sensitive to changing temperature. The present study highlights that soil type is needed to be carefully considered for regional estimate and proposing mitigation strategy of N2O emissions especially in subtropical mountain regions with inherent great heterogeneity of soil type.


Subject(s)
Nitrous Oxide , Soil , Nitrous Oxide/analysis , Seasons , Triticum , Zea mays
8.
J Environ Qual ; 49(5): 1126-1140, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016438

ABSTRACT

Nitrous oxide (N2 O) emissions are highly episodic in response to nitrogen additions and changes in soil moisture. Automated gas sampling provides the necessary high temporal frequency to capture these emission events in real time, ensuring the development of accurate N2 O inventories and effective mitigation strategies to reduce global warming. This paper outlines the design and operational considerations of automated chamber systems including chamber design and deployment, frequency of gas sampling, and options in terms of the analysis of gas samples. The basic hardware and software requirements for automated chambers are described, including the major challenges and obstacles in their implementation and operation in a wide range of environments. Detailed descriptions are provided of automated systems that have been deployed to assess the impacts of agronomy on the emissions of N2 O and other significant greenhouse gases. This information will assist researchers across the world in the successful deployment and operation of automated N2 O chamber systems.


Subject(s)
Greenhouse Gases , Nitrous Oxide/analysis , Nitrogen , Soil
9.
Sci Data ; 7(1): 316, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985502

ABSTRACT

The data set contains information on aboveground vegetation traits of > 100 georeferenced locations within ten temperate pre-Alpine grassland plots in southern Germany. The grasslands were sampled in April 2018 for the following traits: bulk canopy height; weight of fresh and dry biomass; dry weight percentage of the plant functional types (PFT) non-green vegetation, legumes, non-leguminous forbs, and graminoids; total green area index (GAI) and PFT-specific GAI; plant water content; plant carbon and nitrogen content (community values and PFT-specific values); as well as leaf mass per area (LMA) of PFT. In addition, a species specific inventory of the plots was conducted in June 2020 and provides plot-level information on grassland type and plant species composition. The data set was obtained within the framework of the SUSALPS project ("Sustainable use of alpine and pre-alpine grassland soils in a changing climate"; https://www.susalps.de/ ) to provide in-situ data for the calibration and validation of remote sensing based models to estimate grassland traits.


Subject(s)
Biomass , Grassland , Plants , Carbon/analysis , Germany , Nitrogen/analysis , Soil/chemistry
10.
Nat Commun ; 11(1): 4644, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934243

ABSTRACT

Sub-Saharan Africa (SSA) is home to approximately » of the global livestock population, which in the last 60 years has increased by factors of 2.5-4 times for cattle, goats and sheep. An important resource for pastoralists, most livestock live in semi-arid and arid environments, where they roam during the day and are kept in enclosures (or bomas) during the night. Manure, although rich in nitrogen, is rarely used, and therefore accumulates in bomas over time. Here we present in-situ measurements of N2O fluxes from 46 bomas in Kenya and show that even after 40 years following abandonment, fluxes are still ~one magnitude higher than those from adjacent savanna sites. Using maps of livestock distribution, we scaled our finding to SSA and found that abandoned bomas are significant hotspots for atmospheric N2O at the continental scale, contributing ~5% of the current estimate of total anthropogenic N2O emissions for all of Africa.

11.
Sci Total Environ ; 710: 136352, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-31927290

ABSTRACT

Increasing water scarcity and rapid socio-economic development are driving farmers in Asia to transform traditionally flooded rice cropping systems into non-flooded crop production. The management of earthworms in non-flooded rice fields appears to be a promising strategy to support residue recycling and mitigate greenhouse gas (GHG) emissions triggered by residue amendment. We conducted a field experiment on non-flooded rainfed rice fields, with and without residue amendment. In-situ mesocosms were inoculated with endogeic earthworms (Metaphire sp.), with either low (ET1: 150 individuals m-2), or high density (ET2: 450 individuals m-2), and a control (ET0: no earthworms). We measured GHG emissions (methane (CH4); nitrous oxide (N2O); carbon dioxide (CO2)) twice a week during the cropping season with static chambers. Effects of earthworms on yield and root growth were additionally assessed. Earthworms offset the enormous increase of CH4 emissions induced by straw amendment (from 4.6 ± 5 to 75.3 ± 46 kg CH4-C ha-1 in ET0). Earthworm activity significantly reduced CH4 release, particularly at ET2, by more than one-third (to 22 ± 15 kg CH4-C ha-1). In contrast, earthworm inoculation did not affect N2O emission. Straw amendment more than doubled the global warming potential (GWP). Earthworms reduced GWP by 39% at low (ET1) and 55% at high densities (ET2). Earthworm activity reduced root mass density under conditions of straw amendment but did not affect yield. Earthworms can significantly reduce detrimental effects of rice crop residue amendment on GHG release under upland rice production. Organic carbon (C) might be preserved in earthworm casts and thereby limit C availability for CH4 production. At the same time, earthworm activity might increase methanotrophic CH4 consumption, due to improved soil aeration or less root exudates. Consequently, earthworms have a strong potential for regulating ecosystem functions related to rice straw decomposition, nutrient allocation and thus GHG reduction.


Subject(s)
Greenhouse Gases , Oligochaeta , Oryza , Agriculture , Animals , Asia , Global Warming , Methane , Nitrous Oxide , Soil
12.
Glob Chang Biol ; 26(4): 2292-2303, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31833173

ABSTRACT

Gaseous nitrogen (N) emissions, especially emissions of dinitrogen (N2 ) and ammonia (NH3 ), have long been considered as the major pathways of N loss from flooded rice paddies. However, no studies have simultaneously evaluated the overall response of gaseous N losses to improved N fertilization practices due to the difficulties to directly measure N2 emissions from paddy soils. We simultaneously quantified emissions of N2 (using membrane inlet mass spectrometry), NH3 and nitrous oxide (N2 O) from a flooded paddy field in southern China over an entire rice-growing season. Our field experiment included three treatments: a control treatment (no N addition) and two N fertilizer (220 kg N/ha) application methods, the traditional surface application of N fertilizer and the incorporation of N fertilizer into the soil. Our results show that over the rice-growing season, the cumulative gaseous N losses from the surface application treatment accounted for 13.5% (N2 ), 19.1% (NH3 ), 0.2% (N2 O) and 32.8% (total gaseous N loss) of the applied N fertilizer. Compared with the surface application treatment, the incorporation of N fertilizer into the soil decreased the emissions of NH3 , N2 and N2 O by 14.2%, 13.3% and 42.5%, respectively. Overall, the incorporation of N fertilizer into the soil significantly reduced the total gaseous N loss by 13.8%, improved the fertilizer N use efficiency by 14.4%, increased the rice yield by 13.9% and reduced the gaseous N loss intensity (gaseous N loss/rice yield) by 24.3%. Our results indicate that the incorporation of N fertilizer into the soil is an effective agricultural management practice in ensuring food security and environmental sustainability in flooded paddy ecosystems.

13.
Nature ; 568(7750): 88-92, 2019 04.
Article in English | MEDLINE | ID: mdl-30918402

ABSTRACT

Agriculture and the exploitation of natural resources have transformed tropical mountain ecosystems across the world, and the consequences of these transformations for biodiversity and ecosystem functioning are largely unknown1-3. Conclusions that are derived from studies in non-mountainous areas are not suitable for predicting the effects of land-use changes on tropical mountains because the climatic environment rapidly changes with elevation, which may mitigate or amplify the effects of land use4,5. It is of key importance to understand how the interplay of climate and land use constrains biodiversity and ecosystem functions to determine the consequences of global change for mountain ecosystems. Here we show that the interacting effects of climate and land use reshape elevational trends in biodiversity and ecosystem functions on Africa's largest mountain, Mount Kilimanjaro (Tanzania). We find that increasing land-use intensity causes larger losses of plant and animal species richness in the arid lowlands than in humid submontane and montane zones. Increases in land-use intensity are associated with significant changes in the composition of plant, animal and microorganism communities; stronger modifications of plant and animal communities occur in arid and humid ecosystems, respectively. Temperature, precipitation and land use jointly modulate soil properties, nutrient turnover, greenhouse gas emissions, plant biomass and productivity, as well as animal interactions. Our data suggest that the response of ecosystem functions to land-use intensity depends strongly on climate; more-severe changes in ecosystem functioning occur in the arid lowlands and the cold montane zone. Interactions between climate and land use explained-on average-54% of the variation in species richness, species composition and ecosystem functions, whereas only 30% of variation was related to single drivers. Our study reveals that climate can modulate the effects of land use on biodiversity and ecosystem functioning, and points to a lowered resistance of ecosystems in climatically challenging environments to ongoing land-use changes in tropical mountainous regions.


Subject(s)
Agriculture/statistics & numerical data , Altitude , Biodiversity , Ecosystem , Tropical Climate , Animals , Humidity , Microbiology , Plants , Rain , Tanzania , Temperature
14.
Ecology ; 100(5): e02675, 2019 05.
Article in English | MEDLINE | ID: mdl-30821344

ABSTRACT

The isotopic composition (ic) of soil nitrogen (N) and, more recently, the intramolecular distribution of 15 N in the N2 O molecule (site preference, SP) are powerful instruments to identify dominant N turnover processes, and to attribute N2 O emissions to their source processes. Despite the process information contained in the ic of N species and the associated potential for model validation, the implementation of isotopes in ecosystem models has lagged behind. To foster the validation of ecosystem models based on the ic of N species, we developed the stable isotope model for nutrient cycles (SIMONE). SIMONE uses fluxes between ecosystem N pools (soil organic N, mineral N, plants, microbes) calculated by biogeochemical models, and literature isotope effects for these processes to calculate the ic of N species. Here, we present the concept of SIMONE, apply it to simulations of the biogeochemical model LandscapeDNDC, and assess the capability of 15 N-N2 O and, to our knowledge for the first time, SP, to constrain simulated N fluxes by LandscapeDNDC. LandscapeDNDC successfully simulated N2 O emission, soil nitrate, and ammonium, as well as soil environmental conditions of an intensively managed grassland site in Switzerland. Accordingly, the dynamics of 15 N-N2 O and SP of soil N2 O fluxes as simulated by SIMONE agreed well with measurements, though 15 N-N2 O was on average underestimated and SP overestimated (root-mean-square error [RMSE] of 8.4‰ and 7.3‰, respectively). Although 15 N-N2 O could not constrain the N cycling process descriptions of LandscapeDNDC, the overestimation of SP indicated an overestimation of simulated nitrification rates by 10-59% at low water content, suggesting the revision of the corresponding model parameterization. Our findings show that N isotope modeling in combination with only recently available high- frequency measurements of the N2 O ic are promising tools to identify and address weaknesses in N cycling of ecosystem models. This will finally contribute to augmenting the development of model-based strategies for mitigating N pollution.


Subject(s)
Ecosystem , Soil , Isotopes , Nitrogen , Nitrogen Isotopes , Nitrous Oxide , Switzerland
15.
Glob Chang Biol ; 25(5): 1839-1851, 2019 05.
Article in English | MEDLINE | ID: mdl-30801860

ABSTRACT

Climate warming will affect terrestrial ecosystems in many ways, and warming-induced changes in terrestrial carbon (C) cycling could accelerate or slow future warming. So far, warming experiments have shown a wide range of C flux responses, across and within biome types. However, past meta-analyses of C flux responses have lacked sufficient sample size to discern relative responses for a given biome type. For instance grasslands contribute greatly to global terrestrial C fluxes, and to date grassland warming experiments provide the opportunity to evaluate concurrent responses of both plant and soil C fluxes. Here, we compiled data from 70 sites (in total 622 observations) to evaluate the response of C fluxes to experimental warming across three grassland types (cold, temperate, and semi-arid), warming methods, and short (≤3 years) and longer-term (>3 years) experiment lengths. Overall, our meta-analysis revealed that experimental warming stimulated C fluxes in grassland ecosystems with regard to both plant production (e.g., net primary productivity (NPP) 15.4%; aboveground NPP (ANPP) by 7.6%, belowground NPP (BNPP) by 11.6%) and soil respiration (Rs) (9.5%). However, the magnitude of C flux stimulation varied significantly across cold, temperate and semi-arid grasslands, in that responses for most C fluxes were larger in cold than temperate or semi-arid ecosystems. In semi-arid and temperate grasslands, ecosystem respiration (Reco) was more sensitive to warming than gross primary productivity (GPP), while the opposite was observed for cold grasslands, where warming produced a net increase in whole-ecosystem C storage. However, the stimulatory effect of warming on ANPP and Rs observed in short-term studies (≤3 years) in both cold and temperate grasslands disappeared in longer-term experiments (>3 years). These results highlight the importance of conducting long-term warming experiments, and in examining responses across a wide range of climate.


Subject(s)
Carbon Cycle , Climate Change , Grassland , Carbon/chemistry , Carbon/metabolism , Climate , Ecosystem , Plants/metabolism , Soil/chemistry , Time Factors
17.
Glob Chang Biol ; 24(12): 5919-5932, 2018 12.
Article in English | MEDLINE | ID: mdl-30295405

ABSTRACT

It is widely recommended that crop straw be returned to croplands to maintain or increase soil carbon (C) storage in arable soils. However, because C and nitrogen (N) biogeochemical cycles are closely coupled, straw return may also affect soil reactive N (Nr) losses, but these effects remain uncertain, especially in terms of the interactions between soil C sequestration and Nr losses under straw addition. Here, we conducted a global meta-analysis using 363 publications to assess the overall effects of straw return on soil Nr losses, C sequestration and crop productivity in agroecosystems. Our results show that on average, compared to mineral N fertilization, straw return with same amount of mineral N fertilizer significantly increased soil organic C (SOC) content (14.9%), crop yield (5.1%), and crop N uptake (10.9%). Moreover, Nr losses in the form of nitrous oxide (N2 O) emissions from rice paddies (17.3%), N leaching (8.7%), and runoff (25.6%) were significantly reduced, mainly due to enhanced microbial N immobilization. However, N2 O emissions from upland fields (21.5%) and ammonia (NH3 ) emissions (17.0%) significantly increased following straw return, mainly due to the stimulation of nitrification/denitrification and soil urease activity. The increase in NH3 and N2 O emissions was significantly and negatively correlated with straw C/N ratio and soil clay content. Regarding the interactions between C sequestration and Nr losses, the increase in SOC content following straw return was significantly and positively correlated with the decrease in N leaching and runoff. However, at a global scale, straw return increased net Nr losses from both rice and upland fields due to a greater stimulation of NH3 emissions than the reduction in N leaching and runoff. The trade-offs between increased net Nr losses and soil C sequestration highlight the importance of reasonably managing straw return to soils to limit NH3 emissions without decreasing associated C sequestration potential.


Subject(s)
Agriculture , Carbon Sequestration , Humic Substances , Nitrogen/analysis , Soil/chemistry , Agriculture/methods , Fertilizers/analysis , Nitrification , Nitrous Oxide/analysis , Oryza/metabolism
18.
Glob Chang Biol ; 24(5): 1843-1872, 2018 05.
Article in English | MEDLINE | ID: mdl-29405521

ABSTRACT

Central European grasslands are characterized by a wide range of different management practices in close geographical proximity. Site-specific management strategies strongly affect the biosphere-atmosphere exchange of the three greenhouse gases (GHG) carbon dioxide (CO2 ), nitrous oxide (N2 O), and methane (CH4 ). The evaluation of environmental impacts at site level is challenging, because most in situ measurements focus on the quantification of CO2 exchange, while long-term N2 O and CH4 flux measurements at ecosystem scale remain scarce. Here, we synthesized ecosystem CO2 , N2 O, and CH4 fluxes from 14 managed grassland sites, quantified by eddy covariance or chamber techniques. We found that grasslands were on average a CO2 sink (-1,783 to -91 g CO2  m-2  year-1 ), but a N2 O source (18-638 g CO2 -eq. m-2  year-1 ), and either a CH4 sink or source (-9 to 488 g CO2 -eq. m-2  year-1 ). The net GHG balance (NGB) of nine sites where measurements of all three GHGs were available was found between -2,761 and -58 g CO2 -eq. m-2  year-1 , with N2 O and CH4 emissions offsetting concurrent CO2 uptake by on average 21 ± 6% across sites. The only positive NGB was found for one site during a restoration year with ploughing. The predictive power of soil parameters for N2 O and CH4 fluxes was generally low and varied considerably within years. However, after site-specific data normalization, we identified environmental conditions that indicated enhanced GHG source/sink activity ("sweet spots") and gave a good prediction of normalized overall fluxes across sites. The application of animal slurry to grasslands increased N2 O and CH4 emissions. The N2 O-N emission factor across sites was 1.8 ± 0.5%, but varied considerably at site level among the years (0.1%-8.6%). Although grassland management led to increased N2 O and CH4 emissions, the CO2 sink strength was generally the most dominant component of the annual GHG budget.


Subject(s)
Grassland , Greenhouse Gases , Carbon Dioxide/analysis , Europe , Greenhouse Effect , Methane/analysis , Models, Theoretical , Nitrous Oxide/analysis , Soil
19.
Glob Chang Biol ; 24(3): 1239-1255, 2018 03.
Article in English | MEDLINE | ID: mdl-29044840

ABSTRACT

In this study, we quantify the impacts of climate and land use on soil N2 O and CH4 fluxes from tropical forest, agroforest, arable and savanna ecosystems in Africa. To do so, we measured greenhouse gases (GHG) fluxes from 12 different ecosystems along climate and land-use gradients at Mt. Kilimanjaro, combining long-term in situ chamber and laboratory soil core incubation techniques. Both methods showed similar patterns of GHG exchange. Although there were distinct differences from ecosystem to ecosystem, soils generally functioned as net sources and sinks for N2 O and CH4 respectively. N2 O emissions correlated positively with soil moisture and total soil nitrogen content. CH4 uptake rates correlated negatively with soil moisture and clay content and positively with SOC. Due to moderate soil moisture contents and the dominance of nitrification in soil N turnover, N2 O emissions of tropical montane forests were generally low (<1.2 kg N ha-1  year-1 ), and it is likely that ecosystem N losses are driven instead by nitrate leaching (~10 kg N ha-1  year-1 ). Forest soils with well-aerated litter layers were a significant sink for atmospheric CH4 (up to 4 kg C ha-1  year-1 ) regardless of low mean annual temperatures at higher elevations. Land-use intensification significantly increased the soil N2 O source strength and significantly decreased the soil CH4 sink. Compared to decreases in aboveground and belowground carbon stocks enhanced soil non-CO2 GHG emissions following land-use conversion from tropical forests to homegardens and coffee plantations were only a small factor in the total GHG budget. However, due to lower ecosystem carbon stock changes, enhanced N2 O emissions significantly contributed to total GHG emissions following conversion of savanna into grassland and particularly maize. Overall, we found that the protection and sustainable management of aboveground and belowground carbon and nitrogen stocks of agroforestry and arable systems is most crucial for mitigating GHG emissions from land-use change.


Subject(s)
Forests , Methane , Nitrous Oxide , Soil/chemistry , Agriculture , Carbon , Carbon Dioxide/analysis , Climate , Fertilizers , Fires , Forestry , Image Processing, Computer-Assisted , Nitrogen , Pesticides , Tanzania
20.
Environ Pollut ; 229: 119-131, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28582675

ABSTRACT

In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive.


Subject(s)
Climate , Grassland , Nitrogen/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Fertilizers , Germany , Nitrates/analysis , Poaceae , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...