Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Biomed Eng ; 49(2): 885-899, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32989592

ABSTRACT

Calcification is a major failure mode of bioprosthetic heart valves. So far, cost and time saving in vitro analyses of calcification potentials are unreliable, mostly due to superficial or spontaneous precipitation of the applied fluids. In this study, we developed a near-physiological non-spontaneously precipitating fluid for an accelerated in vitro calcification assessment, and validated it by analyzing the calcification potential of two prosthetic materials within two reference-tests. The first test focused on the comparison of four calcification fluids under dynamic contact with n=12 commercial bovine pericardium patches. The second one focused on the validation of the most appropriate fluid by analyzing the calcification potential of pericardium vs. polyurethane. The patches were mounted in separate test compartments and treated simultaneously with the respective fluids at an accelerated test frequency. Calcification propensity and progression were detected macroscopically and microscopically. Structural analyses of all deposits indicated hydroxyapatite by X-ray powder diffraction, which is also most commonly observed in vivo. Histological examination by von Kossa staining showed matrix internal and superficial calcifications, depending on the fluid composition. The present study reveals promising results towards the development of a meaningful, cost and time saving in vitro analysis of the calcification potential of bioprosthetic heart valves.


Subject(s)
Bioprosthesis , Calcification, Physiologic , Heart Valve Prosthesis , Animals , Cattle , Chemical Precipitation , Heart Valves , Materials Testing
2.
Ann Biomed Eng ; 48(1): 282-297, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31493168

ABSTRACT

Calcification is a major reason for the failure of bioprosthetic heart valves. Therefore, several attempts towards an accelerated in vitro model were undertaken in order to provide a cost- and time-saving method for the analysis of calcification processes. Due to the problem of superficial or spontaneous precipitation, which occurred in the fluids applied, we focused our study on the development of a near-physiological calcification fluid. The desired fluid should not precipitate spontaneously and should neither promote nor inhibit calcification. Eleven different fluid compositions were tested without contact to potentially calcifying materials. Crucial factors regarding the fluid properties were the ionic product, the ionic strength, and the degree of supersaturation concerning dicalciumphosphate-dihydrate, octacalciumphosphate, and hydroxyapatite. The fluids were kept in polyethylene bottles and exposed to a slight vibration within a durability tester at 37 °C. The precipitation propensity was monitored optically and colorimetrically. A structural analysis of the deposits was carried out by x-ray powder diffraction and IR-spectroscopy, which showed the development of the crystal phases that are relevant in vivo. Only two of the fluids did not precipitate. Resulting from the computations of the effective fluid contents, the saturation degree concerning dicalciumphosphate-dihydrate seems to be the key factor for spontaneous precipitation.


Subject(s)
Bioprosthesis , Calcification, Physiologic , Heart Valves , Animals , Calcium Chloride , Cattle , Chemical Precipitation , Materials Testing , Pericardium , Phosphates , Potassium Chloride
SELECTION OF CITATIONS
SEARCH DETAIL
...