Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 50(3): 228-237, 2023 03.
Article in English | MEDLINE | ID: mdl-36398458

ABSTRACT

Metabolic syndrome (MetS) is a rapidly increasing health concern during midlife and is an emerging risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD). While angiotensin receptor blockers (ARB) are widely used for MetS-associated hypertension and kidney disease, its therapeutic potential in the brain during MetS are not well-described. Here, we tested whether treatment with ARB could alleviate the brain pathology and inflammation associated with MetS using the Otsuka Long-Evans Tokushima Fatty (OLETF) rat. Here, we report that chronic ARB treatment with olmesartan (10 mg/kg/day by oral gavage for 6 weeks) partially but significantly ameliorated accumulation of oxidized and ubiquitinated proteins, astrogliosis and transformation to neurotoxic astrocytes in the brain of old OLETF rats, which otherwise exhibit the progression of these pathological hallmarks associated with MetS. Additionally, olmesartan treatment restored claudin-5 and ZO-1, markers of the structural integrity of the blood-brain barrier as well as synaptic protein PSD-95, which were otherwise decreased in old OLETF rats, particularly in the hippocampus, a critical region in cognition, memory and AD. These data demonstrate that the progression of MetS in OLETF rats is associated with deterioration of various aspects of neuronal integrity that may manifest neurodegenerative conditions and that overactivation of angiotensin receptor directly or indirectly contributes to these detriments. Thus, olmesartan treatment may slow or delay the onset of degenerative process in the brain and subsequent neurological disorders associated with MetS.


Subject(s)
Diabetes Mellitus, Type 2 , Metabolic Syndrome , Rats , Animals , Rats, Inbred OLETF , Angiotensin Receptor Antagonists , Receptors, Angiotensin , Angiotensin-Converting Enzyme Inhibitors , Obesity/complications , Obesity/drug therapy , Obesity/metabolism , Rats, Long-Evans , Metabolic Syndrome/metabolism , Brain/metabolism , Blood Glucose/metabolism
2.
Mol Neurobiol ; 57(5): 2447-2460, 2020 May.
Article in English | MEDLINE | ID: mdl-32146679

ABSTRACT

Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-ß (Aß), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aß clearance, leading to the accelerated buildup of Aß pathology and cognitive decline during the early stage of neuropathological development. To elucidate the pivotal role of HCK in AD, we generated a constitutive knockout of HCK in the Tg2576 mouse model of AD. We found that HCK deficiency accelerated cognitive decline along with elevated Aß level and plaque burden, attenuated microglial Aß phagocytosis, induced iNOS expression in microglial clusters, and reduced pre-synaptic protein at the hippocampal regions. Our findings substantiate that HCK plays a prominent role in regulating microglial neuroprotective functions and attenuating early AD neuropathology.


Subject(s)
Alzheimer Disease/enzymology , Microglia/enzymology , Proto-Oncogene Proteins c-hck/deficiency , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Disease Progression , Exploratory Behavior , Female , Homeostasis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microglia/pathology , Morris Water Maze Test , Myeloid Cells/enzymology , Neuroimmunomodulation , Phagocytosis , Plaque, Amyloid , Proto-Oncogene Proteins c-hck/genetics , Recognition, Psychology
3.
Glia ; 66(12): 2700-2718, 2018 12.
Article in English | MEDLINE | ID: mdl-30277607

ABSTRACT

Emerging evidence have posited that dysregulated microglia impair clearance and containment of amyloid-ß (Aß) species in the brain, resulting in aberrant buildup of Aß and onset of Alzheimer's disease (AD). Hematopoietic cell kinase (Hck) is one of the key regulators of phagocytosis among the Src family tyrosine kinases (SFKs) in myeloid cells, and its expression is found to be significantly altered in AD brains. However, the role of Hck signaling in AD pathogenesis is unknown. We employed pharmacological inhibition and genetic ablation of Hck in BV2 microglial cells and J20 mouse model of AD, respectively, to evaluate the impact of Hck deficiency on Aß-stimulated microglial phagocytosis, Aß clearance, and resultant AD-like neuropathology. Our in vitro data reveal that pharmacological inhibition of SFKs/Hck in BV2 cells and genetic ablation of their downstream kinase, spleen tyrosine kinase (Syk), in primary microglia significantly attenuate Aß oligomers-stimulated microglial phagocytosis. Whereas in Hck-deficient J20 mice, we observed exacerbated Aß plaque burden, reduced microglial coverage, containment, and phagocytosis of Aß plaques, and induced iNOS expression in plaque-associated microglial clusters. These multifactorial changes in microglial activities led to attenuated PSD95 levels in hippocampal DG and CA3 regions, but did not alter the postsynaptic dendritic spine morphology at the CA1 region nor cognitive function of the mice. Hck inhibition thus accelerates early stage AD-like neuropathology by dysregulating microglial function and inducing neuroinflammation. Our data implicate that Hck pathway plays a prominent role in regulating microglial neuroprotective function during the early stage of AD development.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Gene Expression Regulation/genetics , Microglia/enzymology , Proto-Oncogene Proteins c-hck/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , CHO Cells , Cells, Cultured , Cricetulus , Disease Models, Animal , Estrogen Antagonists/pharmacology , Exploratory Behavior/physiology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/genetics , Lipopolysaccharides/pharmacology , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/ultrastructure , Phagocytosis/drug effects , Phagocytosis/genetics , Proto-Oncogene Proteins c-hck/genetics , Receptors, Platelet-Derived Growth Factor/genetics , Receptors, Platelet-Derived Growth Factor/metabolism , Syk Kinase/genetics , Syk Kinase/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/pharmacology , Transfection
4.
PLoS Genet ; 14(5): e1007312, 2018 05.
Article in English | MEDLINE | ID: mdl-29742100

ABSTRACT

During neural circuit formation, most axons are guided to complex environments, coming into contact with multiple potential synaptic partners. However, it is critical that they recognize specific neurons with which to form synapses. Here, we utilize the split GFP-based marker Neuroligin-1 GFP Reconstitution Across Synaptic Partners (NLG-1 GRASP) to visualize specific synapses in live animals, and a circuit-specific behavioral assay to probe circuit function. We demonstrate that the receptor protein tyrosine phosphatase (RPTP) clr-1 is necessary for synaptic partner recognition (SPR) between the PHB sensory neurons and the AVA interneurons in C. elegans. Mutations in clr-1/RPTP result in reduced NLG-1 GRASP fluorescence and impaired behavioral output of the PHB circuit. Temperature-shift experiments demonstrate that clr-1/RPTP acts early in development, consistent with a role in SPR. Expression and cell-specific rescue experiments indicate that clr-1/RPTP functions in postsynaptic AVA neurons, and overexpression of clr-1/RPTP in AVA neurons is sufficient to direct additional PHB-AVA synaptogenesis. Genetic analysis reveals that clr-1/RPTP acts in the same pathway as the unc-6/Netrin ligand and the unc-40/DCC receptor, which act in AVA and PHB neurons, respectively. This study defines a new mechanism by which SPR is governed, and demonstrates that these three conserved families of molecules, with roles in neurological disorders and cancer, can act together to regulate communication between cells.


Subject(s)
Mutation , Recognition, Psychology , Synapses/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Interneurons/metabolism , Larva/genetics , Larva/metabolism , Locomotion/genetics , Locomotion/physiology , Microscopy, Confocal , Receptor-Like Protein Tyrosine Phosphatases/genetics , Receptor-Like Protein Tyrosine Phosphatases/metabolism , Sensory Receptor Cells/metabolism , Synapses/genetics , Synaptic Transmission/genetics , Synaptic Transmission/physiology
5.
Neurobiol Aging ; 36(7): 2260-2271, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25964214

ABSTRACT

Glial glutamate transporter, GLT-1, is the major Na(+)-driven glutamate transporter to control glutamate levels in synapses and prevent glutamate-induced excitotoxicity implicated in neurodegenerative disorders including Alzheimer's disease (AD). Significant functional loss of GLT-1 has been reported to correlate well with synaptic degeneration and severity of cognitive impairment among AD patients, yet the underlying molecular mechanism and its pathological consequence in AD are not well understood. Here, we find the temporal decrease in GLT-1 levels in the hippocampus of the 3xTg-AD mouse model and that the pharmacological upregulation of GLT-1 significantly ameliorates the age-dependent pathological tau accumulation, restores synaptic proteins, and rescues cognitive decline with minimal effects on Aß pathology. In primary neuron and astrocyte coculture, naturally secreted Aß species significantly downregulate GLT-1 steady-state and expression levels. Taken together, our data strongly suggest that GLT-1 restoration is neuroprotective and Aß-induced astrocyte dysfunction represented by a functional loss of GLT-1 may serve as one of the major pathological links between Aß and tau pathology.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Brain/metabolism , Brain/pathology , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Excitatory Amino Acid Transporter 2/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cells, Cultured , Disease Models, Animal , Glutamic Acid/metabolism , Glutamic Acid/toxicity , Mice, Inbred C57BL , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...