Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Eur Radiol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724764

ABSTRACT

OBJECTIVES: To conduct an intrapatient comparison of ultra-low-dose computed tomography (ULDCT) and standard-of-care-dose CT (SDCT) of the chest in terms of the diagnostic accuracy of ULDCT and intrareader agreement in patients with post-COVID conditions. METHODS: We prospectively included 153 consecutive patients with post-COVID-19 conditions. All participants received an SDCT and an additional ULDCT scan of the chest. SDCTs were performed with standard imaging parameters and ULDCTs at a fixed tube voltage of 100 kVp (with tin filtration), 50 ref. mAs (dose modulation active), and iterative reconstruction algorithm level 5 of 5. All CT scans were separately evaluated by four radiologists for the presence of lung changes and their consistency with post-COVID lung abnormalities. Radiation dose parameters and the sensitivity, specificity, and accuracy of ULDCT were calculated. RESULTS: Of the 153 included patients (mean age 47.4 ± 15.3 years; 48.4% women), 45 (29.4%) showed post-COVID lung abnormalities. In those 45 patients, the most frequently detected CT patterns were ground-glass opacities (100.0%), reticulations (43.5%), and parenchymal bands (37.0%). The accuracy, sensitivity, and specificity of ULDCT compared to SDCT for the detection of post-COVID lung abnormalities were 92.6, 87.2, and 94.9%, respectively. The median total dose length product (DLP) of ULDCTs was less than one-tenth of the radiation dose of our SDCTs (12.6 mGy*cm [9.9; 15.5] vs. 132.1 mGy*cm [103.9; 160.2]; p < 0.001). CONCLUSION: ULDCT of the chest offers high accuracy in the detection of post-COVID lung abnormalities compared to an SDCT scan at less than one-tenth the radiation dose, corresponding to only twice the dose of a standard chest radiograph in two views. CLINICAL RELEVANCE STATEMENT: Ultra-low-dose CT of the chest may provide a favorable, radiation-saving alternative to standard-dose CT in the long-term follow-up of the large patient cohort of post-COVID-19 patients.

3.
Article in English | MEDLINE | ID: mdl-38626904

ABSTRACT

BACKGROUND: In older patients, a limited physical reserve is considered a contraindication for lung transplantation (LTx). Herein, we aimed to establish a computed tomography (CT)-based quantification of physical reserve in older patients scheduled for transplantation. METHODS: This retrospective study included patients older than 60 years who received LTx. Semiautomatic measurements of the mediastinal fat area and the dorsal muscle group area in pretransplantation CT scans were performed, and normalized data were correlated with clinical parameters. RESULTS: Patients (n = 108) were assigned into three groups (Musclehighfatlow [n = 25], Musclelowfathigh [n = 24], and other combinations [n = 59]). The Musclelowfathigh group had a significantly increased risk of wound infections (p = 0.002) and tracheostomy (p = 0.001) compared with Musclehighfatlow patients. The median length of intensive care unit stay (25 vs. 3.5 days; p = 0.002) and the median length of hospital stay (44 vs. 22.5 days; p = 0.013) post-LTx were significantly prolonged in the Musclelowfathigh group. Significantly more patients in this group had a prolonged ventilation time (11 vs. 0; p < 0.001). CONCLUSION: Body composition parameters determined in pretransplant chest CT scans in older LTx candidates might aid in identifying high-risk patients with a worse perioperative outcome after LTx.

4.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672601

ABSTRACT

BACKGROUND: The reproducibility of radiomics features extracted from CT and MRI examinations depends on several physiological and technical factors. The aim was to evaluate the impact of contrast agent timing on the stability of radiomics features using dynamic contrast-enhanced perfusion CT (dceCT) or MRI (dceMRI) in prostate and lung cancers. METHODS: Radiomics features were extracted from dceCT or dceMRI images in patients with biopsy-proven peripheral prostate cancer (pzPC) or biopsy-proven non-small cell lung cancer (NSCLC), respectively. Features that showed significant differences between contrast phases were identified using linear mixed models. An L2-penalized logistic regression classifier was used to predict class labels for pzPC and unaffected prostate regions-of-interest (ROIs). RESULTS: Nine pzPC and 28 NSCLC patients, who were imaged with dceCT and/or dceMRI, were included in this study. After normalizing for individual enhancement patterns by defining seven individual phases based on a reference vessel, 19, 467 and 128 out of 1204 CT features showed significant temporal dynamics in healthy prostate parenchyma, prostate tumors and lung tumors, respectively. CT radiomics-based classification accuracy of healthy and tumor ROIs was highly dependent on contrast agent phase. For dceMRI, 899 and 1027 out of 1118 features were significantly dependent on time after contrast agent injection for prostate and lung tumors. CONCLUSIONS: CT and MRI radiomics features in both prostate and lung tumors are significantly affected by interindividual differences in contrast agent dynamics.

5.
Diagnostics (Basel) ; 14(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38248056

ABSTRACT

Lung ultrasound is a well-established diagnostic approach used in detecting pathological changes near the pleura of the lung. At the acoustic boundary of the lung surface, it is necessary to differentiate between the primary visualization of pleural parenchymal pathologies and the appearance of secondary artifacts when sound waves enter the lung or are reflected at the visceral pleura. The aims of this pictorial essay are to demonstrate the sonographic patterns of various pleural interface artifacts and to illustrate the limitations and pitfalls of the use of ultrasound findings in diagnosing any underlying pathology.

6.
Life (Basel) ; 14(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276275

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICI) are one of the most effective therapies in oncology, albeit associated with various immune-related adverse events also affecting the cardiovascular system. METHODS: We aimed to investigate the effect of ICI on arterial 2-[18F]FDG uptake by using 2-[18F]FDG PET/CT imaging pre/post treatment in 47 patients with lung cancer. Maximum 2-[18F]FDG standardized uptake values (SUVmax) and target-to-background ratios (TBRs) were calculated along six arterial segments. We classified the arterial PET lesions by pre-existing active inflammation (cut-off: TBRpre ≥ 1.6). 2-[18F]FDG metabolic activity pre/post treatment was also quantified in bone marrow, spleen, and liver. Circulating blood biomarkers were additionally collected at baseline and after immunotherapy. RESULTS: ICI treatment resulted in significantly increased arterial inflammatory activity, detected by increased TBRs, in all arterial PET lesions analyzed. In particular, a significant elevation of arterial 2-[18F]FDG uptake was only recorded in PET lesions without pre-existing inflammation, in calcified as well as in non-calcified lesions. Furthermore, a significant increase in arterial 2-[18F]FDG metabolic activity after immunotherapy was solely observed in patients not previously treated with chemotherapy or radiotherapy as well as in those without CV risk factors. No significant changes were recorded in either 2-[18F]FDG uptake of bone marrow, spleen and liver after treatment, or the blood biomarkers. CONCLUSIONS: ICI induces vascular inflammation in lung cancer patients lacking pre-existing arterial inflammation.

7.
NMR Biomed ; 37(2): e5054, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37794648

ABSTRACT

The aim of the current study was to compare the performance of fully automated software with human expert interpretation of single-voxel proton magnetic resonance spectroscopy (1H-MRS) spectra in the assessment of breast lesions. Breast magnetic resonance imaging (MRI) (including contrast-enhanced T1-weighted, T2-weighted, and diffusion-weighted imaging) and 1H-MRS images of 74 consecutive patients were acquired on a 3-T positron emission tomography-MRI scanner then automatically imported into and analyzed by SpecTec-ULR 1.1 software (LifeTec Solutions GmbH). All ensuing 117 spectra were additionally independently analyzed and interpreted by two blinded radiologists. Histopathology of at least 24 months of imaging follow-up served as the reference standard. Nonparametric Spearman's correlation coefficients for all measured parameters (signal-to-noise ratio [SNR] and integral of total choline [tCho]), Passing and Bablok regression, and receiver operating characteristic analysis, were calculated to assess test diagnostic performance, as well as to compare automated with manual reading. Based on 117 spectra of 74 patients, the area under the curve for tCho SNR and integrals ranged from 0.768 to 0.814 and from 0.721 to 0.784 to distinguish benign from malignant tissue, respectively. Neither method displayed significant differences between measurements (automated vs. human expert readers, p > 0.05), in line with the results from the univariate Spearman's rank correlation coefficients, as well as the Passing and Bablok regression analysis. It was concluded that this pilot study demonstrates that 1H-MRS data from breast MRI can be automatically exported and interpreted by SpecTec-ULR 1.1 software. The diagnostic performance of this software was not inferior to human expert readers.


Subject(s)
Breast Neoplasms , Choline , Humans , Female , Proton Magnetic Resonance Spectroscopy , Choline/analysis , Pilot Projects , Sensitivity and Specificity , Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology
8.
Eur J Radiol ; 170: 111198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992608

ABSTRACT

PURPOSE: The purpose of this study was to assess the ability of pretreatment PET parameters and peripheral blood biomarkers to predict progression-free survival (PFS) and overall survival (OS) in NSCLC patients treated with ICIT. METHODS: We prospectively included 87 patients in this study who underwent pre-treatment [18F]-FDG PET/CT. Organ-specific and total metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured using a semiautomatic software. Sites of organ involvement (SOI) were assessed by PET/CT. The log-rank test and Cox-regression analysis were used to assess associations between clinical, laboratory, and imaging parameters with PFS and OS. Time dependent ROC were calculated and model performance was evaluated in terms of its clinical utility. RESULTS: MTV increased with the number of SOI and was correlated with neutrophil and lymphocyte cell count (Spearman's rho = 0.27 or 0.32; p =.02 or 0.003; respectively). Even after adjustment for known risk factors, such as PD-1 expression and neutrophil cell count, the MTV and the number of SOI were independent risk factors for progression (per 100 cm3; adjusted hazard ratio [aHR]: 1.13; 95% confidence interval [95%CI]: 1.01-1.28; p =.04; single SOI vs. ≥ 4 SOI: aHR: 2.26, 95%CI: 1.04-4.94; p =.04). MTV and the number of SOI were independent risk factors for overall survival (per 100 cm3 aHR: 1.11, 95%CI: 1.01-1.23; p =.03; single SOI vs. ≥ 4 SOI: aHR: 4.54, 95%CI: 1.64-12.58; p =.04). The combination of MTV and the number of SOI improved the risk stratification for PFS and OS (log-rank test p <.001; C-index: 0.64 and 0.67). CONCLUSION: The MTV and the number of SOI are simple imaging markers that provide complementary information to facilitate risk stratification in NSCLC patients scheduled for ICIT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Positron Emission Tomography Computed Tomography , Immune Checkpoint Inhibitors , Tumor Burden , Fluorodeoxyglucose F18/metabolism , Prognosis , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Retrospective Studies , Glycolysis , Radiopharmaceuticals
9.
BJR Open ; 5(1): 20220026, 2023.
Article in English | MEDLINE | ID: mdl-37035768

ABSTRACT

A wide spectrum of conditions, from life-threatening to non-urgent, can manifest with acute dyspnea, thus presenting major challenges for the treating physician when establishing the diagnosis and severity of the underlying disease. Imaging plays a decisive role in the assessment of acute dyspnea of cardiac and/or pulmonary origin. This article presents an overview of the current imaging modalities used to narrow the differential diagnosis in the assessment of acute dyspnea of cardiac or pulmonary origin. The current indications, findings, accuracy, and limits of each imaging modality are reported. Chest radiography is usually the primary imaging modality applied. There is a low radiation dose associated with this method, and it can assess the presence of fluid in the lung or pleura, consolidations, hyperinflation, pneumothorax, as well as heart enlargement. However, its low sensitivity limits the ability of the chest radiograph to accurately identify the causes of acute dyspnea. CT provides more detailed imaging of the cardiorespiratory system, and therefore, better sensitivity and specificity results, but it is accompanied by higher radiation exposure. Ultrasonography has the advantage of using no radiation, and is fast and feasible as a bedside test and appropriate for the assessment of unstable patients. However, patient-specific factors, such as body habitus, may limit its image quality and interpretability. Advances in knowledge This review provides guidance to the appropriate choice of imaging modalities in the diagnosis of patients with dyspnea of cardiac or pulmonary origin.

10.
Eur J Radiol ; 161: 110732, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804313

ABSTRACT

The introduction of neoadjuvant immune checkpoint inhibitors plus platinum-based chemotherapy has changed treatment regimens of patient's early-stage lung cancer. This treatment combination induces high rates of complete pathologic response and improves clinical endpoints. Imaging plays a fundamental role in assessment of treatment response, monitoring of (immune-related) adverse events and enables both the surgeon and pathologist optimal treatment and diagnostic workup of the resected tumor samples. Knowledge of the strengths and weaknesses of diagnostic imaging in this setting are essential for radiologists to provide valuable input in multidisciplinary team decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Immune Checkpoint Inhibitors , Carcinoma, Non-Small-Cell Lung/pathology , Neoadjuvant Therapy/methods , Immunotherapy/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Radiologists
11.
Radiologie (Heidelb) ; 63(3): 154-159, 2023 Mar.
Article in German | MEDLINE | ID: mdl-36715717

ABSTRACT

BACKGROUND: Mediastinal masses are common and comprise a heterogeneous spectrum of disorders. Correct diagnosis has prognostic and therapeutic consequences, which is why precise localization of lesions and interdisciplinary management are essential in clinical practice. This article describes traditional divisions of mediastinum lesions and presents the new classification based on cross-sectional imaging, which was developed by the International Thymic Malignancy Interest Group (ITMIG). OBJECTIVES: Which divisions of the mediastinum have been used so far and how does the division developed by the ITMIG differ? What are the advantages of the new mediastinal classification? MATERIALS AND METHODS: Comparison of the previously used mediastinal classification with the new mediastinal classification developed by ITMIG and visualization of the respective methods. In addition, pathologies typical for the respective compartments are explained. RESULTS AND CONCLUSION: The traditional compartmentalization of the mediastinum into an anterior, middle, and posterior mediastinum is not clearly defined and may lead to confusing interdisciplinary communication. Since these classifications are mostly based on projection radiographs, the proposed three-dimensional classification of the ITMIG is a development that suits the modern clinical workflow and promotes standardization. The three mediastinal compartments should thus be termed prevascular, visceral, and paravertebral.


Subject(s)
Mediastinal Neoplasms , Thymus Neoplasms , Humans , Mediastinum/pathology , Mediastinal Neoplasms/diagnosis , Mediastinal Neoplasms/pathology , Tomography, X-Ray Computed/methods , Thymus Neoplasms/diagnosis , Thymus Neoplasms/pathology , Diagnosis, Differential
12.
Radiology ; 307(1): e222087, 2023 04.
Article in English | MEDLINE | ID: mdl-36445225

ABSTRACT

Background Photon-counting detector (PCD) CT enables ultra-high-resolution lung imaging and may shed light on morphologic correlates of persistent symptoms after COVID-19. Purpose To compare PCD CT with energy-integrating detector (EID) CT for noninvasive assessment of post-COVID-19 lung abnormalities. Materials and Methods For this prospective study, adult participants with one or more COVID-19-related persisting symptoms (resting or exertional dyspnea, cough, fatigue) underwent same-day EID and PCD CT between April 2022 and June 2022. The 1.0-mm EID CT images and, subsequently, 1.0-, 0.4-, and 0.2-mm PCD CT images were reviewed for the presence of lung abnormalities. Subjective and objective EID and PCD CT image quality were evaluated using a five-point Likert scale (-2 to 2) and lung signal-to-noise ratios (SNRs). Results Twenty participants (mean age, 54 years ± 16 [SD]; 10 men) were included. EID CT showed post-COVID-19 lung abnormalities in 15 of 20 (75%) participants, with a median involvement of 10% of lung volume [IQR, 0%-45%] and 3.5 lobes [IQR, 0-5]. Ground-glass opacities and linear bands (10 of 20 participants [50%] for both) were the most frequent findings at EID CT. PCD CT revealed additional lung abnormalities in 10 of 20 (50%) participants, with the most common being bronchiectasis (10 of 20 [50%]). Subjective image quality was improved for 1.0-mm PCD versus 1.0-mm EID CT images (median, 1; IQR, 1-2; P < .001) and 0.4-mm versus 1.0-mm PCD CT images (median, 1; IQR, 1-1; P < .001) but not for 0.4-mm versus 0.2-mm PCD CT images (median, 0; IQR, 0-0.5; P = .26). PCD CT delivered higher lung SNR versus EID CT for 1.0-mm images (mean difference, 0.53 ± 0.96; P = .03) but lower SNR for 0.4-mm versus 1.0-mm images and 0.2-mm vs 0.4-mm images (-1.52 ± 0.68 [P < .001] and -1.15 ± 0.43 [P < .001], respectively). Conclusion Photon-counting detector CT outperformed energy-integrating detector CT in the visualization of subtle post-COVID-19 lung abnormalities and image quality. © RSNA, 2023 Supplemental material is available for this article.


Subject(s)
COVID-19 , Photons , Male , Adult , Humans , Middle Aged , Prospective Studies , Phantoms, Imaging , COVID-19/diagnostic imaging , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging
13.
AJR Am J Roentgenol ; 220(5): 672-680, 2023 05.
Article in English | MEDLINE | ID: mdl-36475813

ABSTRACT

BACKGROUND. Prior work has shown improved image quality for photon-counting detector (PCD) CT of the lungs compared with energy-integrating detector CT. A paucity of the literature has compared PCD CT of the lungs using different reconstruction parameters. OBJECTIVE. The purpose of this study is to the compare the image quality of ultra-high-resolution (UHR) PCD CT image sets of the lungs that were reconstructed using different kernels and slice thicknesses. METHODS. This retrospective study included 29 patients (17 women and 12 men; median age, 56 years) who underwent noncontrast chest CT from February 15, 2022, to March 15, 2022, by use of a commercially available PCD CT scanner. All acquisitions used UHR mode (1024 × 1024 matrix). Nine image sets were reconstructed for all combinations of three sharp kernels (BI56, BI60, and BI64) and three slice thicknesses (0.2, 0.4, and 1.0 mm). Three radiologists independently reviewed reconstructions for measures of visualization of pulmonary anatomic structures and pathologies; reader assessments were pooled. Reconstructions were compared with the clinical reference reconstruction (obtained using the BI64 kernel and a 1.0-mm slice thickness [BI641.0-mm]). RESULTS. The median difference in the number of bronchial divisions identified versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.5), BI600.4-mm (0.3), BI640.2-mm (0.5), and BI600.2-mm (0.2) (all p < .05). The median bronchial wall sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3) and BI640.2-mm (0.3) and was lower for BI561.0-mm (-0.7) and BI560.4-mm (-0.3) (all p < .05). Median pulmonary fissure sharpness versus the clinical reference reconstruction was higher for reconstructions with BI640.4-mm (0.3), BI600.4-mm (0.3), BI560.4-mm (0.5), BI640.2-mm (0.5), BI600.2-mm (0.5), and BI560.2-mm (0.3) (all p < .05). Median pulmonary vessel sharpness versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3), BI600.4-mm (-0.3), BI560.4-mm (-0.7), BI640.2-mm (-0.7), BI600.2-mm (-0.7), and BI560.2-mm (-0.7). Median lung nodule conspicuity versus the clinical reference reconstruction was lower for reconstructions with BI561.0-mm (-0.3) and BI560.4-mm (-0.3) (both p < .05). Median conspicuity of all other pathologies versus the clinical reference reconstruction was lower for reconstructions with BI561.0 mm (-0.3), BI560.4-mm (-0.3), BI640.2-mm (-0.3), BI600.2-mm (-0.3), and BI560.2-mm (-0.3). Other comparisons among reconstructions were not significant (all p > .05). CONCLUSION. Only the reconstruction using BI640.4-mm yielded improved bronchial division identification and bronchial wall and pulmonary fissure sharpness without a loss in pulmonary vessel sharpness or conspicuity of nodules or other pathologies. CLINICAL IMPACT. The findings of this study may guide protocol optimization for UHR PCD CT of the lungs.


Subject(s)
Lung , Tomography, X-Ray Computed , Male , Humans , Female , Middle Aged , Retrospective Studies , Phantoms, Imaging , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Bronchi
14.
Eur J Cardiothorac Surg ; 62(3)2022 08 03.
Article in English | MEDLINE | ID: mdl-35916716

ABSTRACT

OBJECTIVES: Traditionally, patients on bridge-to-transplant extracorporeal membrane oxygenation were kept sedated and intubated. However, awake bridging strategies have evolved during recent years. This study aims to elaborate differences in physical activity and postoperative outcomes after lung transplantation (LTx), depending on bridging strategy and duration. METHODS: Bridged patients receiving LTx between March 2013 and April 2021 were analysed. Awake bridging was defined as a Richmond Agitation-Sedation Scale score of ≥-1 until 24 h before transplantation. Patients were grouped in awake and sedated cohorts. RESULTS: A total of 88 patients (35 awake, 53 sedated bridging) were included. After LTx, mobilization to standing position was achieved earlier in awake bridged patients (7 vs 15 days, P < 0.001). Postoperative ventilation time (247 vs 88 h, P = 0.005) and intensive care unit stay (30 vs 16 days, P = 0.004) were longer in the sedated cohort. Awake patients with bridging duration >6 days showed shorter postoperative ventilation time (108 vs 383 h, P = 0.003), less intensive care unit days (23 vs 36, P = 0.003) and earlier mobilization to standing position (9 vs 17 days, P < 0.001). In contrast, postoperative ventilation time and days in intensive care unit in patients with bridge-to-transplant duration ≤6 days were comparable between cohorts. Mobilization to standing position was achieved faster in the awake (≤6 days) bridged cohort (5 vs 9 days, P = 0.024). CONCLUSIONS: Despite the complex management of bridged patients, excellent survival rates after LTx can be achieved. Especially in patients with more than 1 week on extracorporeal membrane oxygenation, awake bridging concepts are associated with significantly faster recovery.


Subject(s)
Extracorporeal Membrane Oxygenation , Lung Transplantation , Humans , Retrospective Studies , Treatment Outcome , Wakefulness
15.
Radiologie (Heidelb) ; 62(9): 738-746, 2022 Sep.
Article in German | MEDLINE | ID: mdl-35736996

ABSTRACT

CLINICAL ISSUE: Smoking-related interstitial lung diseases are a heterogeneous group of pulmonary abnormalities. The correct diagnosis has prognostic and therapeutic implications. This article introduces the most common smoking-related interstitial lung diseases and describes a structured approach to support the diagnostic workflow. PRACTICAL RECOMMENDATIONS: Computed tomography is pivotal in the diagnostic workflow of smoking-related interstitial lung diseases and may reduce the number of unnecessary lung biopsies. To achieve high diagnostic accuracy, a standardized scanning protocol, and a structured assessment approach should be utilized. During inflammatory stages of respiratory bronchiolitis (RB), respiratory bronchiolitis interstitial lung diseases (RB-ILD), and desquamative interstitial pneumonia (DIP), cessation of smoking as well as the use of steroids are the treatment of choice. In case of fibrotic changes (e.g., in idiopathic pulmonary fibrosis [IPF]), antifibrotic therapy with nintedanib and pirfenidone may be used. Patients with suspected smoking-related interstitial lung disease should be discussed in interdisciplinary board meetings.


Subject(s)
Bronchiolitis , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Bronchiolitis/diagnosis , Humans , Idiopathic Pulmonary Fibrosis/diagnosis , Lung Diseases, Interstitial/diagnosis , Smoking/adverse effects , Tobacco Smoking
16.
J Nucl Med ; 63(12): 1941-1948, 2022 12.
Article in English | MEDLINE | ID: mdl-35772962

ABSTRACT

We introduce multiple-organ objective segmentation (MOOSE) software that generates subject-specific, multiorgan segmentation using data-centric artificial intelligence principles to facilitate high-throughput systemic investigations of the human body via whole-body PET imaging. Methods: Image data from 2 PET/CT systems were used in training MOOSE. For noncerebral structures, 50 whole-body CT images were used, 30 of which were acquired from healthy controls (14 men and 16 women), and 20 datasets were acquired from oncology patients (14 men and 6 women). Noncerebral tissues consisted of 13 abdominal organs, 20 bone segments, subcutaneous fat, visceral fat, psoas muscle, and skeletal muscle. An expert panel manually segmented all noncerebral structures except for subcutaneous fat, visceral fat, and skeletal muscle, which were semiautomatically segmented using thresholding. A majority-voting algorithm was used to generate a reference-standard segmentation. From the 50 CT datasets, 40 were used for training and 10 for testing. For cerebral structures, 34 18F-FDG PET/MRI brain image volumes were used from 10 healthy controls (5 men and 5 women imaged twice) and 14 nonlesional epilepsy patients (7 men and 7 women). Only 18F-FDG PET images were considered for training: 24 and 10 of 34 volumes were used for training and testing, respectively. The Dice score coefficient (DSC) was used as the primary metric, and the average symmetric surface distance as a secondary metric, to evaluate the automated segmentation performance. Results: An excellent overlap between the reference labels and MOOSE-derived organ segmentations was observed: 92% of noncerebral tissues showed DSCs of more than 0.90, whereas a few organs exhibited lower DSCs (e.g., adrenal glands [0.72], pancreas [0.85], and bladder [0.86]). The median DSCs of brain subregions derived from PET images were lower. Only 29% of the brain segments had a median DSC of more than 0.90, whereas segmentation of 60% of regions yielded a median DSC of 0.80-0.89. The results of the average symmetric surface distance analysis demonstrated that the average distance between the reference standard and the automatically segmented tissue surfaces (organs, bones, and brain regions) lies within the size of image voxels (2 mm). Conclusion: The proposed segmentation pipeline allows automatic segmentation of 120 unique tissues from whole-body 18F-FDG PET/CT images with high accuracy.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Male , Humans , Female , Positron Emission Tomography Computed Tomography/methods , Artificial Intelligence , Human Body , Semantics , Image Processing, Computer-Assisted/methods
17.
Ann Thorac Surg ; 114(3): 1050-1054, 2022 09.
Article in English | MEDLINE | ID: mdl-35504359

ABSTRACT

PURPOSE: Dual-lumen extracorporeal membrane oxygenation (ECMO) cannulation is considered technically challenging and harbors the risk of potential life-threatening complications during cannulation. Dual-lumen cannula insertion is performed under either ultrasound or fluoroscopy guidance. Both techniques have significant disadvantages, such as examiner dependence or the necessity for transportation of the patient from the intensive care unit to the operating room. DESCRIPTION: Digital, mobile x-ray devices provide a novel, examiner-independent imaging modality for bedside dual-lumen ECMO cannulation. EVALUATION: From November 2019 to November 2021, 23 dual-lumen cannulations were performed in 20 patients at the Department of Thoracic Surgery, Medical University of Vienna. Twelve of 23 (52.2%) were inserted in the intensive care unit using a mobile x-ray device. The remaining patients (47.8%) were cannulated in the operating room with conventional fluoroscopy guidance. In none of the procedures did cardiovascular injuries occur. Insertion site bleeding was the most common ECMO-related complication (n = 2). CONCLUSIONS: Dual-lumen cannulation using sequential x-rays can be performed safely. Especially for infectious patients or patients who require an awake ECMO, this technique overcomes disadvantages of established imaging modalities.


Subject(s)
Catheterization , Extracorporeal Membrane Oxygenation , X-Rays , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Humans , Retrospective Studies , Ultrasonography
18.
Radiologe ; 62(2): 130-139, 2022 Feb.
Article in German | MEDLINE | ID: mdl-34997260

ABSTRACT

CLINICAL ISSUE: Diffuse parenchymal lung diseases include a heterogeneous group of diseases of the lung parenchyma, the alveolar spaces, the vessels and the airways, which can be triggered by various pathomechanisms, such as inflammation and fibrotic changes. Since the therapeutic approaches and prognoses differ significantly between the diseases, the correct diagnosis is of fundamental importance. In routine clinical practice, next to the patients' history, the clinical presentation, the laboratory findings and the bronchoscopy, imaging plays a central role in establishing a diagnosis. PRACTICAL RECOMMENDATIONS: The diagnosis of diffuse parenchymal lung diseases is an enormous challenge for clinicians, radiologists as well as pathologists and should therefore preferably be carried out in a multidisciplinary setting. Since patients often present with unspecific, respiratory symptoms, chest radiographs are the first imaging method used. Many patterns of diffuse parenchymal lung diseases (e.g., ground-glass opacities and consolidations), their distribution (e.g., cranial-caudal) and the presence of additional findings (e.g., mediastinal lymphadenopathy) are often already detectable on chest X­rays. However, the imaging reference standard and thus, an integral part of the assessment of diffuse parenchymal lung disease, is the chest HR-CT. In some cases, the pattern of the HR-CT is pathognomonic, in others it is unspecific for a disease, so that further diagnostic steps are necessary.


Subject(s)
Lung Diseases, Interstitial , Lung Diseases , Bronchoscopy , Humans , Lung/diagnostic imaging , Lung Diseases/diagnostic imaging , Lung Diseases, Interstitial/diagnostic imaging , Radiography , Tomography, X-Ray Computed
19.
J Thorac Cardiovasc Surg ; 163(5): 1719-1731.e2, 2022 05.
Article in English | MEDLINE | ID: mdl-33451825

ABSTRACT

BACKGROUND: The use of organs from polytrauma donors for lung transplantation is controversial in the literature. For many centers, the radiologic manifestation of lung contusions is a clear reason to reject an organ offer. This results in the loss of potentially viable organs for the donor pool. METHODS: We analyzed 1152 donor lungs procured by our transplant center between January 2010 and June 2018. These included 118 lungs with a history of polytrauma involving the chest. Sixteen polytrauma donor lungs were rejected after procurement. A total of 102 lungs were transplanted, divided into 2 groups: the polytrauma contusion group (n = 44), comprising polytrauma donors with radiologic signs of lung contusion at the time of offer, and the polytrauma clear group (n = 58), comprising polytrauma donors without lung contusion. Nontrauma donor lungs transplanted during the study period were assigned to a polytrauma control group (n = 650). Short- and long-term outcomes of the 3 groups were compared. RESULTS: Basic demographic data and preoperative factors were similar in the 3 groups. Rates of primary graft dysfunction grade 3 at 72 hours did not differ among the 3 groups (0.0% vs 3.4% vs 3.9%; P = .409). The duration of ventilation was similar the 3 groups: 45 hours (interquartile range [IQR], 28-94 hours), 37 hours (IQR, 22-71 hours), and 42 hours (IQR, 22-96 hours), respectively (P = .674). Long-term graft survival was not impaired in the trauma groups compared with controls. One-year survival rates were 84.1% for the polytrauma contusion group, 93.1% for the polytrauma clear group, and 83.1% for the no polytrauma group. Five-year graft survival in the 3 groups was 74.7%, 87.2%, and 70.0%, respectively. CONCLUSIONS: Lung transplantation using organs from polytrauma donors is associated with similar short- and long-term results as transplantation from nontrauma donors. The presence or absence of radiologic signs of lung contusion at the time of offer has no impact on primary graft function and long-term survival.


Subject(s)
Contusions , Lung Transplantation , Multiple Trauma , Tissue and Organ Procurement , Humans , Lung , Lung Transplantation/adverse effects , Lung Transplantation/methods , Multiple Trauma/surgery , Retrospective Studies , Tissue Donors , Treatment Outcome
20.
Am J Transplant ; 22(1): 144-153, 2022 01.
Article in English | MEDLINE | ID: mdl-34254423

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a rapidly progressive lung disease with a high mortality rate. Although lung transplantation (LTx) is a well-established treatment for a variety of chronic pulmonary diseases, LTx for acute lung failure (due to ARDS) remains controversial. We reviewed posttransplant outcome of ARDS patients from three high-volume European transplant centers. Demographics and clinical data were collected and analyzed. Viral infection was the main reason for ARDS (n = 7/13, 53.8%). All patients were admitted to ICU and required mechanical ventilation, 11/13 were supported with ECMO at the time of listing. They were granted a median LAS of 76 (IQR 50-85) and waited for a median of 3 days (IQR 1.5-14). Postoperatively, median length of mechanical ventilation was 33 days (IQR 17-52.5), median length of ICU and hospital stay were 39 days (IQR 19.5-58.5) and 54 days (IQR 43.5-127). Prolongation of peripheral postoperative ECMO was required in 7/13 (53.8%) patients with a median duration of 2 days (IQR 2-7). 30-day mortality was 7.7%, 1 and 5-year survival rates were calculated as 71.6% and 54.2%, respectively. Given the lack of alternative treatment options, the herein presented results support the concept of offering live-saving LTx to carefully selected ARDS patients.


Subject(s)
Lung Transplantation , Respiratory Distress Syndrome , Humans , Length of Stay , Lung , Respiration, Artificial
SELECTION OF CITATIONS
SEARCH DETAIL
...