Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 19(1): 58, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30727963

ABSTRACT

BACKGROUND: Plants grow in multi-species communities rather than monocultures. Yet most studies on the emission of volatile organic compounds (VOCs) from plants in response to insect herbivore feeding focus on one plant species. Whether the presence and identity of neighboring plants or plant community attributes, such as plant species richness and plant species composition, affect the herbivore-induced VOC emission of a focal plant is poorly understood. METHODS: We established experimental plant communities in pots in the greenhouse where the focal plant species, red clover (Trifolium pratense), was grown in monoculture, in a two species mixture together with Geranium pratense or Dactylis glomerata, or in a mixture of all three species. We measured VOC emission of the focal plant and the entire plant community, with and without herbivory of Spodoptera littoralis caterpillars caged on one red clover individual within the communities. RESULTS: Herbivory increased VOC emission from red clover, and increasing plant species richness changed emissions of red clover and also from the entire plant community. Neighbor identity strongly affected red clover emission, with highest emission rates for plants growing together with D. glomerata. CONCLUSION: The results from this study indicate that the blend of VOCs perceived by host searching insects can be affected by plant-plant interactions.


Subject(s)
Ecosystem , Plants/metabolism , Volatile Organic Compounds/metabolism , Animals , Dactylis/metabolism , Geranium/metabolism , Herbivory , Larva , Spodoptera , Trifolium/metabolism
2.
Commun Biol ; 1: 13, 2018.
Article in English | MEDLINE | ID: mdl-30271900

ABSTRACT

Wheat stem rust, a devastating disease of wheat and barley caused by the fungal pathogen Puccinia graminis f. sp. tritici, was largely eradicated in Western Europe during the mid-to-late twentieth century. However, isolated outbreaks have occurred in recent years. Here we investigate whether a lack of resistance in modern European varieties, increased presence of its alternate host barberry and changes in climatic conditions could be facilitating its resurgence. We report the first wheat stem rust occurrence in the United Kingdom in nearly 60 years, with only 20% of UK wheat varieties resistant to this strain. Climate changes over the past 25 years also suggest increasingly conducive conditions for infection. Furthermore, we document the first occurrence in decades of P. graminis on barberry in the UK . Our data illustrate that wheat stem rust does occur in the UK and, when climatic conditions are conducive, could severely harm wheat and barley production.

3.
J Chem Ecol ; 39(4): 537-45, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23525954

ABSTRACT

Plant volatiles mediate interactions with herbivores, herbivore enemies, and abiotic stresses, but these interactions mostly have been studied with individual isolated plants. It is not yet known how intra- and interspecific plant competition influence volatile emission. In a greenhouse experiment, we investigated the volatile emission by red clover (Trifolium pratense) growing alone, with a conspecific, or with an individual of the naturally co-occurring orchard grass, Dactylis glomerata. The individual and combined effects of above- and below ground plant contact were investigated. When T. pratense grew together with a conspecific, both total and herbivore-induced emission of volatiles was significantly reduced as compared to T. pratense growing with D. glomerata or growing alone. This reduction in emission occurred despite the fact that there was a significant reduction in T. pratense biomass due to competition with D. glomerata. The suppression of T. pratense volatile emission growing next to a conspecific was a general pattern observed for all major herbivore-induced volatiles and independent of whether plants were in contact above ground, below ground, or both above- and below ground. The reduction in volatile emission from plants growing with conspecifics may serve to reduce attack by specialist herbivores and minimize exploitation of herbivore attack information by neighbors.


Subject(s)
Trifolium/chemistry , Volatile Organic Compounds/chemistry , Animals , Dactylis/growth & development , Ecosystem , Herbivory/physiology , Larva/physiology , Phenotype , Spodoptera/growth & development , Spodoptera/physiology , Trifolium/growth & development , Volatile Organic Compounds/metabolism
4.
J Chem Ecol ; 35(11): 1335-48, 2009 Nov.
Article in English | MEDLINE | ID: mdl-20013039

ABSTRACT

Plants emit a wide range of volatile organic compounds in response to damage by herbivores, and many of the compounds have been shown to attract the natural enemies of insect herbivores or serve for inter- and intra-plant communication. Most studies have focused on volatile emission in the laboratory while little is known about emission patterns in the field. We studied the emission of volatiles by Trifolium pratense (red clover) under both laboratory and field conditions. The emission of 24 compounds was quantified in the laboratory, of which eight showed increased emission rates after herbivory by Spodoptera littoralis caterpillars, including (E)-beta-ocimene, the most abundant compound, (Z)-beta-ocimene, linalool, (E)-beta-caryophyllene, (E,E)-alpha-farnesene, 4,8-dimethyl-1,3,7-nonatriene (DMNT), 1-octen-3-ol, and methyl salicylate (MeSA). While most of these compounds have been reported as herbivore-induced volatiles from a wide range of plant taxa, 1-octen-3-ol seems to be a characteristic volatile of legumes. In the field, T. pratense plants with varying herbivore damage growing in established grassland communities emitted only 13 detectable compounds, and the correlation between herbivore damage and volatile release was more variable than in the laboratory. For example, the emission of (E)-beta-ocimene, (Z)-beta-ocimene, and DMNT actually declined with damage, while decanal exhibited increased emission with increasing herbivory. Elevated light and temperature increased the emission of many compounds, but the differences in light and temperature conditions between the laboratory and the field could not account for the differences in emission profiles. Our results indicate that the release of volatiles from T. pratense plants in the field is likely to be influenced by additional biotic and abiotic factors not measured in this study. The elucidation of these factors may be important in understanding the physiological and ecological functions of volatiles in plants.


Subject(s)
Laboratories , Organic Chemicals/chemistry , Organic Chemicals/metabolism , Spodoptera/physiology , Trifolium/metabolism , Animals , Mechanical Phenomena , Temperature , Time Factors , Trifolium/physiology , Trifolium/radiation effects , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...