Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 51(1): 65-72, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15779084

ABSTRACT

Electric fields impact cellular functions by activation of ion channels or by interfering with cell membrane integrity. Ion channels can regulate cell cycle and play a role in tumorigenesis. While the cell cycle may be directly altered by ion fluxes, exposure to direct electric current of sufficient intensity may decrease tumor burden by generating chemical products, including cytotoxic molecules or heat. We report that in the absence of thermal influences, low-frequency, low-intensity, alternating current (AC) directly affects cell proliferation without a significant deleterious contribution to cell survival. These effects were observed in normal human cells and in brain and prostate neoplasms, but not in lung cancer. The effects of AC stimulation required a permissive role for GIRK2 (or K(IR)3.2) potassium channels and were mimicked by raising extracellular potassium concentrations. Cell death could be achieved at higher AC frequencies (>75 Hz) or intensities (>8.5 microA); at lower frequencies/intensities, AC stimulation did not cause apoptotic cellular changes. Our findings implicate a role for transmembrane potassium fluxes via inward rectifier channels in the regulation of cell cycle. Brain stimulators currently used for the treatment of neurological disorders may thus also be used for the treatment of brain (or other) tumors.


Subject(s)
Cell Proliferation , Neoplasms/pathology , Adenylate Kinase/metabolism , Astrocytes/physiology , Blotting, Western , Bromodeoxyuridine , Caspase 3 , Caspases/metabolism , Cell Cycle/physiology , Electric Stimulation , Epilepsy/pathology , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Hot Temperature , Humans , Immunohistochemistry , Neoplasms/therapy , Potassium/pharmacology , Potassium Channels, Inwardly Rectifying/metabolism
2.
BMC Med ; 2: 37, 2004 Oct 09.
Article in English | MEDLINE | ID: mdl-15473912

ABSTRACT

BACKGROUND: The multiple drug resistance protein (MDR1/P-glycoprotein) is overexpressed in glia and blood-brain barrier (BBB) endothelium in drug refractory human epileptic tissue. Since various antiepileptic drugs (AEDs) can act as substrates for MDR1, the enhanced expression/function of this protein may increase their active extrusion from the brain, resulting in decreased responsiveness to AEDs. METHODS: Human drug resistant epileptic brain tissues were collected after surgical resection. Astrocyte cell cultures were established from these tissues, and commercially available normal human astrocytes were used as controls. Uptake of fluorescent doxorubicin and radioactive-labeled Phenytoin was measured in the two cell populations, and the effect of MDR1 blockers was evaluated. Frozen human epileptic brain tissue slices were double immunostained to locate MDR1 in neurons and glia. Other slices were exposed to toxic concentrations of Phenytoin to study cell viability in the presence or absence of a specific MDR1 blocker. RESULTS: MDR1 was overexpressed in blood vessels, astrocytes and neurons in human epileptic drug-resistant brain. In addition, MDR1-mediated cellular drug extrusion was increased in human 'epileptic' astrocytes compared to 'normal' ones. Concomitantly, cell viability in the presence of cytotoxic compounds was increased. CONCLUSIONS: Overexpression of MDR1 in different cell types in drug-resistant epileptic human brain leads to functional alterations, not all of which are linked to drug pharmacokinetics. In particular, the modulation of glioneuronal MDR1 function in epileptic brain in the presence of toxic concentrations of xenobiotics may constitute a novel cytoprotective mechanism.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Astrocytes/metabolism , Brain/metabolism , Drug Resistance, Multiple , Epilepsy/metabolism , Adolescent , Adult , Antibiotics, Antineoplastic/metabolism , Anticonvulsants/metabolism , Anticonvulsants/therapeutic use , Brain/pathology , Cell Survival , Child , Child, Preschool , Doxorubicin/metabolism , Epilepsy/drug therapy , Epilepsy/pathology , Female , Humans , Infant , Male , Middle Aged , Phenytoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...