Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 12860, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896576

ABSTRACT

In this paper, we use Polyethylene Oxide (PEO) particles to control the morphology of Formamidinium (FA)-rich perovskite films and achieve large grains with improved optoelectronic properties. Consequently, a planar perovskite solar cell (PSC) is fabricated with additions of 5 wt% of PEO, and the highest PCE of 18.03% was obtained. This solar cell is also shown to retain up to 80% of its initial PCE after about 140 h of storage under the ambient conditions (average relative humidity of 62.5 ± 3.25%) in an unencapsulated state. Furthermore, the steady-state PCE of the PEO-modified PSC device remained stable for long (over 2500 s) under continuous illumination. This addition of PEO particles is shown to enable the tuning of the optoelectronic properties of perovskite films, improvements in the overall photophysical properties of PSCs, and an increase in resistance to the degradation of PSCs.

2.
Materials (Basel) ; 13(23)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261206

ABSTRACT

In this work, African maize cobs (AMC) were used as a rich biomass precursor to synthesize carbon material through a chemical activation process for application in electrochemical energy storage devices. The carbonization and activation were carried out with concentrated Sulphuric acid at three different temperatures of 600, 700 and 800 °C, respectively. The activated carbon exhibited excellent microporous and mesoporous structure with a specific surface area that ranges between 30 and 254 m2·g-1 as measured by BET analysis. The morphology and structure of the produced materials are analyzed through Field Emission Scanning Electron Microscopy (FESEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Boehm titration, X-ray Photoelectron Spectroscopy (XPS) and Raman Spectroscopy. X-ray photoelectron spectroscopy indicates that a considerable amount of oxygen is present in the materials. The functional groups in the activated carbon enhanced the electrochemical performance and improved the material's double-layer capacitance. The carbonized composite activated at 700 °C exhibited excellent capacitance of 456 F g-1 at a specific current of 0.25 A g-1 in 6 M KOH electrolyte and showed excellent stability after 10,000 cycles. Besides being a low cost, the produced materials offer good stability and electrochemical properties, making them suitable for supercapacitor applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...