Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Glia ; 72(8): 1402-1417, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38591338

ABSTRACT

It is well-established that spinal microglia and peripheral macrophages play critical roles in the etiology of neuropathic pain; however, growing evidence suggests sex differences in pain hypersensitivity owing to microglia and macrophages. Therefore, it is crucial to understand sex- and androgen-dependent characteristics of pain-related myeloid cells in mice with nerve injury-induced neuropathic pain. To deplete microglia and macrophages, pexidartinib (PLX3397), an inhibitor of the colony-stimulating factor 1 receptor, was orally administered, and mice were subjected to partial sciatic nerve ligation (PSL). Following PSL induction, healthy male and female mice and male gonadectomized (GDX) mice exhibited similar levels of spinal microglial activation, peripheral macrophage accumulation, and mechanical allodynia. Treatment with PLX3397 significantly suppressed mechanical allodynia in normal males; this was not observed in female and GDX male mice. Sex- and androgen-dependent differences in the PLX3397-mediated preventive effects were observed on spinal microglia and dorsal root ganglia (DRG) macrophages, as well as in expression patterns of pain-related inflammatory mediators in these cells. Conversely, no sex- or androgen-dependent differences were detected in sciatic nerve macrophages, and inhibition of peripheral CC-chemokine receptor 5 prevented neuropathic pain in both sexes. Collectively, these findings demonstrate the presence of considerable sex- and androgen-dependent differences in the etiology of neuropathic pain in spinal microglia and DRG macrophages but not in sciatic nerve macrophages. Given that the mechanisms of neuropathic pain may differ among experimental models and clinical conditions, accumulating several lines of evidence is crucial to comprehensively clarifying the sex-dependent regulatory mechanisms of pain.


Subject(s)
Microglia , Neuralgia , Pyrroles , Sex Characteristics , Animals , Male , Female , Mice , Neuralgia/metabolism , Neuralgia/drug therapy , Neuralgia/etiology , Microglia/drug effects , Microglia/metabolism , Pyrroles/pharmacology , Aminopyridines/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Sciatic Nerve/injuries , Sciatic Nerve/drug effects , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Cord/pathology , Peripheral Nerve Injuries/complications , Peripheral Nerve Injuries/metabolism , Disease Models, Animal
2.
J Pharmacol Sci ; 153(4): 183-187, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37973215

ABSTRACT

Although microglia are associated with chronic pain, the role of spinal microglia in the regulation of itch remains unclear. In this study, we characterized spinal microglial activation in a mouse model of imiquimod (IMQ)-induced psoriasis. Hypertrophic (activated) microglia were observed throughout the spinal cord after the topical application of IMQ. Furthermore, the mRNA expression of microglial markers and inflammatory mediators was upregulated. Ablation of itch-related sensory neurons using resiniferatoxin decreased itch-related scratching behavior and the number of hypertrophic microglia in the spinal dorsal horn. Conclusively, sensory neuron input may partially contribute to spinal microglial activation after IMQ application.


Subject(s)
Microglia , Psoriasis , Mice , Animals , Imiquimod/adverse effects , Imiquimod/metabolism , Microglia/metabolism , Spinal Cord/metabolism , Disease Models, Animal , Pruritus/chemically induced , Psoriasis/chemically induced , Psoriasis/genetics
3.
Drugs ; 83(9): 771-793, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37209211

ABSTRACT

As clinical use of currently available opioid analgesics is often impeded by dose-limiting adverse effects, such as abuse liability and respiratory depression, new approaches have been pursued to develop safe, effective, and non-addictive pain medications. After the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) receptor more than 25 years ago, NOP receptor-related agonists have emerged as a promising target for developing novel and effective opioids that modulate the analgesic and addictive properties of mu-opioid peptide (MOP) receptor agonists. In this review, we highlight the effects of the NOP receptor-related agonists compared with those of MOP receptor agonists in experimental rodent and more translational non-human primate (NHP) models and the development status of key NOP receptor-related agonists as potential safe and non-addictive analgesics. Several lines of evidence demonstrated that peptidic and non-peptidic NOP receptor agonists produce potent analgesic effects by intrathecal delivery in NHPs. Moreover, mixed NOP/MOP receptor partial agonists (e.g., BU08028, BU10038, and AT-121) display potent analgesic effects when administered intrathecally or systemically, without eliciting adverse effects, such as respiratory depression, itch behavior, and signs of abuse liability. More importantly, cebranopadol, a mixed NOP/opioid receptor agonist with full efficacy at NOP and MOP receptors, produces robust analgesic efficacy with reduced adverse effects, conferring promising outcomes in clinical studies. A balanced coactivation of NOP and MOP receptors is a strategy that warrants further exploration and refinement for the development of novel analgesics with a safer and effective profile.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Respiratory Insufficiency , Animals , Humans , Nociceptin Receptor , Receptors, Opioid/agonists , Pain/drug therapy , Receptors, Opioid, mu/agonists , Analgesics, Opioid/adverse effects , Analgesics/adverse effects , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy
4.
Neuropharmacology ; 223: 109328, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36356937

ABSTRACT

Opioids provide pain relief but are associated with several adverse effects. Researchers are exploring cannabis-based medicine as an alternative. However, little is known about the tendency for physical dependence on cannabinoids in comparison with that on opioids in primates. The aim of this study was to compare the potency of heroin and delta-9-tetrahydrocannabinol (THC) in eliciting analgesic effects and the development of physical dependence between opioids and cannabinoids in both male and female rhesus monkeys. Systemic administration of either heroin (0.03-0.18 mg/kg) or THC (0.3-1.8 mg/kg) in a dose-dependent manner produced antinociceptive effects against an acute thermal nociceptive stimulus. The µ-opioid receptor antagonist naltrexone (0.01 mg/kg) and the cannabinoid receptor antagonist SR141716A (0.3 mg/kg) produced the same degree of rightward shift in the dose-response curves for heroin- and THC-induced antinociception, respectively. Monkeys implanted with telemetry devices were subjected to short-term repeated administrations (two injections per day for 1-3 days) of either heroin (0.18 mg/kg), morphine (1.8 mg/kg), THC (1.8 mg/kg), or CP 55,940 (0.032 mg/kg). Administration of naltrexone (0.01 mg/kg) increased respiration, heart rate, and blood pressure in heroin- or morphine-treated monkeys. In contrast, administration of SR141716A (0.3 mg/kg) did not cause a significant change in these physiological parameters in THC- or CP 55,940-treated monkeys. Additionally, morphine, but not CP 55,940, enhanced the monkeys' hypersensitivity to the algogen capsaicin. Collectively, these results demonstrate that in nonhuman primates, both opioids and cannabinoids exert comparable antinociception; however, physical dependence on opioids, but not cannabinoids, at their antinociceptive doses, occurs following short-term exposures.


Subject(s)
Analgesics, Opioid , Cannabinoids , Female , Male , Animals , Analgesics, Opioid/pharmacology , Cannabinoids/pharmacology , Dronabinol/pharmacology , Morphine/pharmacology , Cannabinoid Receptor Agonists/pharmacology , Heroin/pharmacology , Naltrexone/pharmacology , Rimonabant , Dose-Response Relationship, Drug
5.
Front Immunol ; 13: 973880, 2022.
Article in English | MEDLINE | ID: mdl-36059440

ABSTRACT

Type-2 bitter taste receptors (Tas2Rs) are a large family of G protein-coupled receptors that are expressed in the oral cavity and serve to detect substances with bitter tastes in foods and medicines. Recent evidence suggests that Tas2Rs are also expressed extraorally, including in immune cells. However, the role of Tas2Rs in immune cells remains controversial. Here, we demonstrate that Tas2R126, Tas2R135, and Tas2R143 are expressed in mouse neutrophils, but not in other immune cells such as macrophages or T and B lymphocytes. Treatment of bone marrow-derived neutrophils from wild-type mice with the Tas2R126/143 agonists arbutin and d-salicin led to enhanced C-X-C motif chemokine ligand 2 (CXCL2)-stimulated migration in vitro, but this response was not observed in neutrophils from Tas2r126/135/143-deficient mice. Enhancement of CXCL2-stimulated migration by Tas2R agonists was accompanied by increased phosphorylation of myosin light chain 2 (MLC2) and was blocked by pretreatment of neutrophils with inhibitors of Rho-associated coiled-coil-containing protein kinase (ROCK), but not by inhibitors of the small GTPase RhoA. Taken together, these results demonstrate that mouse neutrophils express functional Tas2R126/143 and suggest a role for Tas2R126/143-ROCK-MLC2-dependent signaling in the regulation of neutrophil migration.


Subject(s)
Neutrophils , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Movement , Ligands , Mice , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Taste
6.
Neurochem Int ; 160: 105415, 2022 11.
Article in English | MEDLINE | ID: mdl-36027995

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and the presence of restricted, repetitive behaviors. Additionally, difficulties in sensory processing commonly occur in ASD. Sensory abnormalities include heightened or reduced sensitivity to pain, but the mechanism underlying sensory phenotypes in ASD remain unknown. Emerging evidence suggests that microglia play an important role in forming and refining neuronal circuitry, and thus contribute to neuronal plasticity and nociceptive signaling. In the present study, we investigated the age-dependent tactile sensitivity in an animal model of ASD induced by prenatal exposure to valproic acid (VPA) and subsequently assessed the involvement of microglia in the spinal cord in pain processing. Pregnant ICR (CD1) mice were intraperitoneally injected with either saline or VPA (500 mg/kg) on embryonic day 12.5. Male offspring of VPA-treated mothers showed mechanical allodynia at both 4 and 8 weeks of age. In the spinal cord dorsal horn in prenatally VPA-treated mice, the numbers and staining intensities of ionized calcium-binding adapter molecule 1-positive cells were increased and the cell bodies became enlarged, indicating microglial activation. Treatment with PLX3397, a colony-stimulating factor 1 receptor inhibitor, for 10 days resulted in a decreased number of spinal microglia and attenuated mechanical allodynia in adult mice prenatally exposed to VPA. Additionally, intrathecal injection of Mac-1-saporin, a saporin-conjugated anti-CD11b antibody to deplete microglia, abolished mechanical allodynia. These findings suggest that prenatal VPA treatment causes allodynia and that spinal microglia contribute to the increased nociceptive responses.


Subject(s)
Autism Spectrum Disorder , Hyperalgesia , Pain , Prenatal Exposure Delayed Effects , Animals , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/complications , Calcium , Disease Models, Animal , Female , Humans , Hyperalgesia/chemically induced , Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Male , Mice , Mice, Inbred ICR , Microglia , Pain/chemically induced , Pain/complications , Pain/drug therapy , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Saporins , Valproic Acid/toxicity
7.
Adv Pharmacol ; 93: 335-371, 2022.
Article in English | MEDLINE | ID: mdl-35341570

ABSTRACT

Although µ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.


Subject(s)
Analgesics, Opioid , Opioid-Related Disorders , Analgesics/therapeutic use , Analgesics, Opioid/adverse effects , Animals , Humans , Ligands , Opioid-Related Disorders/drug therapy , Pain/drug therapy , Primates , Receptors, Opioid, mu
8.
Biochem Pharmacol ; 198: 114972, 2022 04.
Article in English | MEDLINE | ID: mdl-35189108

ABSTRACT

Despite accumulating evidence in rodents, the functional role of neuromedin B (NMB) in regulating somatosensory systems in primate spinal cord is unknown. We aimed to compare the expression patterns of NMB and its receptor (NMBR) and the behavioral effects of intrathecal (i.t.) NMB with gastrin-releasing peptide (GRP) on itch or pain in non-human primates (NHPs). We used six adult rhesus monkeys. The mRNA or protein expressions of NMB, GRP, and their receptors were evaluated by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, or in situ hybridization. We determined the behavioral effects of NMB or GRP via acute thermal nociception, capsaicin-induced thermal allodynia, and itch scratching response assays. NMB expression levels were greater than those of GRP in the dorsal root ganglia and spinal dorsal horn. Conversely, NMBR expression was significantly lower than GRP receptor (GRPR). I.t. NMB elicited only mild scratching responses, whereas GRP caused robust scratching responses. GRP- and NMB-elicited scratching responses were attenuated by GRPR (RC-3095) and NMBR (PD168368) antagonists, respectively. Moreover, i.t. NMB and GRP did not induce thermal hypersensitivity and GRPR and NMBR antagonists did not affect peripherally elicited thermal allodynia. Consistently, NMBR expression was low in both itch- and pain-responsive neurons in the spinal dorsal horn. Spinal NMB-NMBR system plays a minimal functional role in the neurotransmission of itch and pain in primates. Unlike the functional significance of the GRP-GRPR system in itch, drugs targeting the spinal NMB-NMBR system may not effectively alleviate non-NMBR-mediated itch.


Subject(s)
Hyperalgesia , Pruritus , Animals , Gastrin-Releasing Peptide/genetics , Gastrin-Releasing Peptide/metabolism , Gastrin-Releasing Peptide/pharmacology , Hyperalgesia/metabolism , Neurokinin B/analogs & derivatives , Pain/metabolism , Primates/metabolism , Pruritus/chemically induced , Pruritus/metabolism , Receptors, Bombesin/genetics , Receptors, Bombesin/metabolism , Spinal Cord , Spinal Cord Dorsal Horn/metabolism
9.
J Neurosci Res ; 100(1): 191-202, 2022 01.
Article in English | MEDLINE | ID: mdl-32255240

ABSTRACT

Following the identification of the nociceptin/orphanin FQ (N/OFQ) peptide (NOP) as an endogenous ligand for the NOP receptor, ample evidence has revealed unique functional profiles of the N/OFQ-NOP receptor system. NOP receptors are expressed in key neural substrates involved in pain and reward modulation. In nonhuman primates (NHPs), NOP receptor activation effectively exerts antinociception and anti-hypersensitivity at the spinal and supraspinal levels. Moreover, NOP receptor activation inhibits dopaminergic transmission and synergistically enhances mu-opioid peptide (MOP) receptor-mediated analgesia. In this article, we have discussed the functional profiles of ligands with dual NOP and MOP receptor agonist activities and highlight their optimal functional efficacy for pain relief and drug abuse treatment. Through coactivation of NOP and MOP receptors, bifunctional NOP/MOP receptor "partial" agonists (e.g., AT-121, BU08028, and BU10038) reveal a wider therapeutic window with fewer side effects. These newly developed ligands potently induce antinociception without MOP receptor agonist-associated side effects such as abuse potential, respiratory depression, itching sensation, and physical dependence. In addition, in both rodent and NHP models, bifunctional NOP/MOP receptor agonists can attenuate reward processing and/or the reinforcing effects of opioids and other abused drugs. While a mixed NOP/opioid receptor "full" agonist cebranopadol is undergoing clinical trials, bifunctional NOP/MOP "partial" agonists exhibit promising therapeutic profiles in translational NHP models for the treatment of pain and opioid abuse. This class of drugs demonstrates the therapeutic advantage of NOP and MOP receptor coactivation, indicating a greater potential for future development.


Subject(s)
Opioid-Related Disorders , Receptors, Opioid , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Animals , Isoquinolines/pharmacology , Isoquinolines/therapeutic use , Naltrexone/analogs & derivatives , Opioid Peptides , Opioid-Related Disorders/drug therapy , Pain/chemically induced , Pain/drug therapy , Phenylpropionates
10.
Anesthesiology ; 135(3): 482-493, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34237134

ABSTRACT

BACKGROUND: Cebranopadol, a mixed nociceptin/opioid receptor full agonist, can effectively relieve pain in rodents and humans. However, it is unclear to what degree different opioid receptor subtypes contribute to its antinociception and whether cebranopadol lacks acute opioid-associated side effects in primates. The authors hypothesized that coactivation of nociceptin receptors and µ receptors produces analgesia with reduced side effects in nonhuman primates. METHODS: The antinociceptive, reinforcing, respiratory-depressant, and pruritic effects of cebranopadol in adult rhesus monkeys (n = 22) were compared with µ receptor agonists fentanyl and morphine using assays, including acute thermal nociception, IV drug self-administration, telemetric measurement of respiratory function, and itch-scratching responses. RESULTS: Subcutaneous cebranopadol (ED50, 2.9 [95% CI, 1.8 to 4.6] µg/kg) potently produced antinociception compared to fentanyl (15.8 [14.6 to 17.1] µg/kg). Pretreatment with antagonists selective for nociceptin and µ receptors, but not δ and κ receptor antagonists, caused rightward shifts of the antinociceptive dose-response curve of cebranopadol with dose ratios of 2 and 9, respectively. Cebranopadol produced reinforcing effects comparable to fentanyl, but with decreased reinforcing strength, i.e., cebranopadol (mean ± SD, 7 ± 3 injections) versus fentanyl (12 ± 3 injections) determined by a progressive-ratio schedule of reinforcement. Unlike fentanyl (8 ± 2 breaths/min), systemic cebranopadol at higher doses did not decrease the respiratory rate (17 ± 2 breaths/min). Intrathecal cebranopadol (1 µg) exerted full antinociception with minimal scratching responses (231 ± 137 scratches) in contrast to intrathecal morphine (30 µg; 3,009 ± 1,474 scratches). CONCLUSIONS: In nonhuman primates, the µ receptor mainly contributed to cebranopadol-induced antinociception. Similar to nociceptin/µ receptor partial agonists, cebranopadol displayed reduced side effects, such as a lack of respiratory depression and pruritus. Although cebranopadol showed reduced reinforcing strength, its detectable reinforcing effects and strength warrant caution, which is critical for the development and clinical use of cebranopadol.


Subject(s)
Indoles/administration & dosage , Pain Measurement/drug effects , Pain Measurement/methods , Receptors, Opioid/agonists , Spiro Compounds/administration & dosage , Analgesics, Opioid/administration & dosage , Animals , Dose-Response Relationship, Drug , Female , Fentanyl/administration & dosage , Injections, Spinal , Macaca mulatta , Male , Opioid Peptides/administration & dosage , Receptors, Opioid/physiology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/physiology , Nociceptin Receptor , Nociceptin
11.
Nihon Yakurigaku Zasshi ; 156(3): 127, 2021.
Article in Japanese | MEDLINE | ID: mdl-33952837
12.
Nihon Yakurigaku Zasshi ; 156(3): 139-144, 2021.
Article in Japanese | MEDLINE | ID: mdl-33952840

ABSTRACT

After the identification of nociceptin/orphanin FQ (N/OFQ) peptide (NOP) and its cognate receptor, the unique functional profiles of the N/OFQ-NOP receptor system have been uncovered. NOP receptors are distributed in the key regions that regulate pain and reward processing in the central nervous system. In non-human primates (NHPs), activation of the NOP receptor causes antinociception and anti-hypersensitivity via spinal and supraspinal effects. Moreover, activation of the NOP receptor attenuates dopaminergic transmission and potentiates mu-opioid peptide (MOP) receptor-mediated analgesia. Here, we highlight the functional profiles of bifunctional NOP and MOP receptor agonists based on their promising effects for the treatment of pain and drug abuse. Bifunctional NOP/MOP receptor "partial" agonists, such as AT-121, BU08028, and BU10038, exert potent analgesic effects without MOP receptor-related side effects such as abuse liability, respiratory depression, physical dependence, and itching in NHPs. These novel NOP/MOP receptor agonists reduce rewarding and the reinforcing effects of abused drugs. Furthermore, a mixed NOP/opioid receptor "full" agonist, cebranopadol, is undergoing several clinical trials, and the therapeutic advantage of the coactivation of NOP and MOP receptors has also been confirmed in humans. Therefore, this class of drugs that coactivate NOP and MOP receptors proposes a wide therapeutic range with fewer side effects, indicating a greater potential for the development of novel safer opioid analgesics.


Subject(s)
Analgesics, Opioid , Receptors, Opioid , Analgesics , Analgesics, Opioid/adverse effects , Animals , Opioid Peptides/therapeutic use , Pain/drug therapy , Nociceptin
13.
Pharmacol Res Perspect ; 9(3): e00790, 2021 05.
Article in English | MEDLINE | ID: mdl-34000759

ABSTRACT

Several lines of evidence have clarified that the key transmission pathways of itching sensation travel from the periphery to the central nervous system (CNS). Despite the functional significance of gastrin-releasing peptide (GRP) and its cognate receptor in the itch processing mechanism in the spinal dorsal horn (SDH), the roles of GRP-expressing (GRP+ ) neurons in different regions remain unclear. This study aimed to determine whether GRP+ neurons in the CNS directly modulated itch processing. To specifically activate spinal and supraspinal GRP neurons by the designer receptors exclusively activated by designer drugs (DREADDs) system, CAG-LSL-Gq-DREADD mice were crossed with GRP-Cre mice, resulting in the development of GRP-hM3Dq mice. Immunohistochemistry showed that hM3Dq was highly expressed in the SDH and brainstem closely related to sensory processing. The intraperitoneal, intrathecal, or intracerebroventricular administration of clozapine-N-oxide, an agonist of hM3Dq, strongly elicited dermatome-dependent itch-related scratching behavior, but did not change pain sensitivity. Importantly, GRP-Gq-DREADD-mediated scratching behavior in GRP-hM3Dq mice was not affected by the ablation of transient receptor potential vanilloid 1+ sensory C-fibers, and it was also observed to a similar degree under chronic itch conditions. Furthermore, there were no significant sex differences in the scratching behavior elicited by GRP-Gq-DREADD, suggesting that itch-dominant roles of central GRP+ neurons might be common in both sexes, at least under normal physiological conditions. These novel findings not only contribute to understanding the functional roles of central GRP+ neurons further, but also propose the development of future effective therapeutics for intractable itching.


Subject(s)
Gastrin-Releasing Peptide/physiology , Neurons/physiology , Pruritus/physiopathology , Animals , Behavior, Animal , Clozapine/analogs & derivatives , Clozapine/pharmacology , Cyclopropanes , Dermatitis, Contact , Female , Haptens , Male , Mice, Inbred C57BL , Mice, Transgenic
14.
Cells ; 10(4)2021 04 12.
Article in English | MEDLINE | ID: mdl-33921365

ABSTRACT

It is important to investigate the sex-dependent roles of microglia in pain hypersensitivity as reactive microglia within the spinal dorsal horn (DH) have been reported to be pivotal in neuropathic pain induction in male rodents upon nerve injury. Here, we aimed at determining the role of sex differences in the behavioral and functional outcomes of the chemogenetic activation of spinal microglia using Gq-designer receptors exclusively activated by designer drugs (Gq-DREADD) driven by the microglia-specific Cx3cr1 promoter. CAG-LSL-human Gq-coupled M3 muscarinic receptors (hM3Dq)-DREADD mice were crossed with CX3C chemokine receptor 1 (CX3CR1)-Cre mice, and immunohistochemistry images revealed that hM3Dq was selectively expressed on Iba1+ microglia, but not on astrocytes and neurons. Intrathecal (i.t.) administration of clozapine-N-oxide (CNO) elicited mechanical allodynia exclusively in male mice. Furthermore, the reactive microglia-dominant molecules that contributed to pain hypersensitivity in CX3CR1-hM3Dq were upregulated in mice of both sexes. The degree of upregulation was greater in male than in female mice. Depletion of spinal microglia using pexidartinib (PLX3397), a colony stimulating factor-1 receptor inhibitor, alleviated the male CX3CR1-hM3Dq mice from pain hypersensitivity and compromised the expression of inflammatory molecules. Thus, the chemogenetic activation of spinal microglia resulted in pain hypersensitivity in male mice, suggesting the sex-dependent molecular aspects of spinal microglia in the regulation of pain.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Designer Drugs/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Hyperalgesia/pathology , Microglia/metabolism , Spinal Cord/metabolism , Animals , Clozapine/analogs & derivatives , Inflammation Mediators/metabolism , Male , Mice, Transgenic , Up-Regulation
15.
Br J Anaesth ; 125(4): 596-604, 2020 10.
Article in English | MEDLINE | ID: mdl-32819621

ABSTRACT

BACKGROUND: A novel G-protein signalling-biased mu opioid peptide (MOP) receptor agonist, PZM21, was recently developed with a distinct chemical structure. It is a potent Gi/o activator with minimal ß-arrestin-2 recruitment. Despite intriguing activity in rodent models, PZM21 function in non-human primates is unknown. The aim of this study was to investigate PZM21 actions after systemic or intrathecal administration in primates. METHODS: Antinociceptive, reinforcing, and pruritic effects of PZM21 were compared with those of the clinically used MOP receptor agonists oxycodone and morphine in assays of acute thermal nociception, capsaicin-induced thermal allodynia, itch scratching responses, and drug self-administration in gonadally intact, adult rhesus macaques (10 males, six females). RESULTS: After subcutaneous administration, PZM21 (1.0-6.0 mg kg-1) and oxycodone (0.1-0.6 mg kg-1) induced dose-dependent thermal antinociceptive effects (P<0.05); PZM21 was 10 times less potent than oxycodone. PZM21 exerted oxycodone-like reinforcing effects and strength as determined by two operant schedules of reinforcement in the intravenous drug self-administration assay. After intrathecal administration, PZM21 (0.03-0.3 mg) dose-dependently attenuated capsaicin-induced thermal allodynia (P<0.05). Although intrathecal PZM21 and morphine induced MOP receptor-mediated antiallodynic effects, both compounds induced robust, long-lasting itch scratching. CONCLUSIONS: PZM21 induced antinociceptive, reinforcing, and pruritic effects similar to clinically used MOP receptor agonists in primates. Although structure-based discovery of PZM21 identified a novel avenue for studying G-protein signalling-biased ligands, biasing an agonist towards G-protein signalling pathways did not determine or alter reinforcing (i.e. abuse potential) or pruritic effects of MOP receptor agonists in a translationally relevant non-human primate model.


Subject(s)
Analgesics/pharmacology , Pruritus/chemically induced , Receptors, Opioid, mu/agonists , Reinforcement, Psychology , Thiophenes/pharmacology , Urea/analogs & derivatives , Animals , Dose-Response Relationship, Drug , Female , Macaca mulatta , Male , Urea/pharmacology
16.
Front Pharmacol ; 11: 925, 2020.
Article in English | MEDLINE | ID: mdl-32636748

ABSTRACT

Despite growing evidence suggesting that spinal microglia play an important role in the molecular mechanism underlying experimental neuropathic pain (NP) in male rodents, evidence regarding the sex-dependent role of these microglia in NP is insufficient. In this study, we evaluated the effects of microglial regulation on NP using Gi-designer receptors exclusively activated by designer drugs (Gi-DREADD) driven by the microglia-specific Cx3cr1 promoter. For the Cre-dependent expression of human Gi-coupled M4 muscarinic receptors (hM4Di) in CX3C chemokine receptor 1-expressing (CX3CR1+) cells, R26-LSL-hM4Di-DREADD mice were crossed with CX3CR1-Cre mice. Mouse models of NP were generated by partial sciatic nerve ligation (PSL) and treatment with anti-cancer agent paclitaxel (PTX) or oxaliplatin (OXA), and mechanical allodynia was evaluated using the von Frey test. Immunohistochemistry revealed that hM4Di was specifically expressed on Iba1+ microglia, but not on astrocytes or neurons in the spinal dorsal horn of CX3CR1-hM4Di mice. PSL-induced mechanical allodynia was significantly attenuated by systemic (intraperitoneal, i.p.) administration of 10 mg/kg of clozapine N-oxide (CNO), a hM4Di-selective ligand, in male CX3CR1-hM4Di mice. The mechanical threshold in naive CX3CR1-hM4Di mice was not altered by i.p. administration of CNO. Consistently, local (intrathecal, i.t.) administration of CNO (20 nmol) significantly relieved PSL-induced mechanical allodynia in male CX3CR1-hM4Di mice. However, neither i.p. nor i.t. administration of CNO affected PSL-induced mechanical allodynia in female CX3CR1-hM4Di mice. Both i.p. and i.t. administration of CNO relieved PTX-induced mechanical allodynia in male CX3CR1-hM4Di mice, and a limited effect of i.p. CNO was observed in female CX3CR1-hM4Di mice. Unlike PTX-induced allodynia, OXA-induced mechanical allodynia was slightly improved, but not significantly relieved, by i.p. administration of CNO in both male and female CX3CR1-hM4Di mice. These results suggest that spinal microglia can be regulated by Gi-DREADD and support the notion that CX3CR1+ spinal microglia play sex-dependent roles in nerve injury-induced NP; however, their roles may vary among different models of NP.

17.
Neuropsychopharmacol Rep ; 40(3): 287-290, 2020 09.
Article in English | MEDLINE | ID: mdl-32584520

ABSTRACT

AIM: Ample evidence indicates that gastrin-releasing peptide receptor (GRPR)-expressing neurons play a critical role in the transmission of acute itch. However, the pathophysiology of spinal mechanisms underlying intractable itch such as psoriasis remains unclear. In this study, we aimed to determine whether itch-responsive GRPR+ neurons contribute to the spinal transmission of imiquimod (IMQ)-induced psoriatic itch. METHODS: To generate a psoriasis model, C57BL/6J mice received a daily topical application of 5% IMQ cream on their shaved back skin for 7-10 consecutive days. GRP+ neurons were inhibited using Cre-dependent expression of Gi-designer receptors exclusively activated by designer drugs (DREADDs), while GRPR+ neurons were ablated by intrathecal administration of bombesin-saporin. RESULTS: Repeated topical application of IMQ elicited psoriasis-like dermatitis and scratching behaviors. The mRNA expression levels of GRP and GRPR were upregulated in the cervical spinal dorsal horn (SDH) on days 7 and 10 after IMQ application. Either chemogenetic silencing of GRP+ neurons by Gi-DREADD or ablation of GRPR+ neurons significantly attenuated IMQ-induced scratching behaviors. CONCLUSION: The GRP-GRPR system might be enhanced in the SDH, and itch-responsive GRPR+ neurons largely contribute to intractable itch in a mouse model of psoriasis.


Subject(s)
Imiquimod/toxicity , Neurons/metabolism , Posterior Horn Cells/metabolism , Pruritus/chemically induced , Pruritus/metabolism , Receptors, Bombesin/biosynthesis , Adjuvants, Immunologic , Animals , Gene Expression , Male , Mice , Mice, Inbred C57BL , Neurons/drug effects , Posterior Horn Cells/drug effects , Pruritus/genetics , Receptors, Bombesin/genetics
18.
Curr Top Med Chem ; 20(31): 2878-2888, 2020.
Article in English | MEDLINE | ID: mdl-32384033

ABSTRACT

Despite similar distribution patterns and intracellular events observed in the nociceptin/ orphanin FQ peptide (NOP) receptor and other opioid receptors, NOP receptor activation displays unique pharmacological profiles. Several researchers have identified a variety of peptide and nonpeptide ligands to determine the functional roles of NOP receptor activation and observed that NOP receptor- related ligands exhibit pain modality-dependent pain processing. Importantly, NOP receptor activation results in anti-nociception and anti-hypersensitivity at the spinal and supraspinal levels regardless of the experimental settings in non-human primates (NHPs). Given that the NOP receptor agonists synergistically enhance mu-opioid peptide (MOP) receptor agonist-induced anti-nociception, it has been hypothesized that dual NOP and MOP receptor agonists may display promising functional properties as analgesics. Accumulating evidence indicates that the mixed NOP/opioid receptor agonists demonstrate favorable functional profiles. In NHP studies, bifunctional NOP/MOP partial agonists (e.g., AT-121, BU08028, and BU10038) exerted potent anti-nociception via NOP and MOP receptor activation; however, dose-limiting adverse effects associated with the MOP receptor activation, including respiratory depression, itch sensation, physical dependence, and abuse liability, were not observed. Moreover, a mixed NOP/opioid receptor agonist, cebranopadol, presented promising outcomes in clinical trials as a novel analgesic. Collectively, the dual agonistic actions on NOP and MOP receptors, with appropriate binding affinities and efficacies, may be a viable strategy to develop innovative and safe analgesics.


Subject(s)
Analgesics, Opioid/pharmacology , Isoquinolines/pharmacology , Naltrexone/analogs & derivatives , Phenylpropionates/pharmacology , Receptors, Opioid/metabolism , Analgesics, Opioid/chemistry , Humans , Isoquinolines/chemistry , Ligands , Naltrexone/chemistry , Naltrexone/pharmacology , Pain/drug therapy , Phenylpropionates/chemistry
19.
Neuropharmacology ; 170: 108025, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32142790

ABSTRACT

Gastrin-releasing peptide (GRP) receptor-expressing (GRPR)+ neurons have a central role in the spinal transmission of itch. Because their fundamental regulatory mechanisms are not yet understood, it is important to determine how such neurons are excited and integrate itch sensation. In this study, we investigated the mechanisms for the activation of itch-responsive GRPR+ neurons in the spinal dorsal horn (SDH). GRPR+ neurons expressed the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) containing the GluR2 subunit. In mice, peripherally elicited histaminergic and non-histaminergic itch was prevented by intrathecal (i.t.) administration of the AMPAR antagonist NBQX, which was consistent with the fact that firing of GRPR+ neurons in SDH under histaminergic and non-histaminergic itch was completely blocked by NBQX, but not by the GRPR antagonist RC-3095. Because GRP+ neurons in SDH contain glutamate, we investigated the role of GRP+ (GRP+/Glu+) neurons in regulating itch. Chemogenetic inhibition of GRP+ neurons suppressed both histaminergic and non-histaminergic itch without affecting the mechanical pain threshold. In nonhuman primates, i.t. administration of NBQX also attenuated peripherally elicited itch without affecting the thermal pain threshold. In a mouse model of diphenylcyclopropenone (DCP)-induced contact dermatitis, GRP, GRPR, and AMPAR subunits were upregulated in SDH. DCP-induced itch was prevented by either silencing GRP+ neurons or ablation of GRPR+ neurons. Altogether, these findings demonstrate that GRP and glutamate cooperatively regulate GRPR+ AMPAR+ neurons in SDH, mediating itch sensation. GRP-GRPR and the glutamate-AMPAR system may play pivotal roles in the spinal transmission of itch in rodents and nonhuman primates.


Subject(s)
Neurons/metabolism , Pruritus/metabolism , Receptors, AMPA/metabolism , Receptors, Bombesin/metabolism , Spinal Cord Dorsal Horn/metabolism , Animals , Bombesin/analogs & derivatives , Bombesin/pharmacology , Cyclopropanes/toxicity , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neurons/drug effects , Peptide Fragments/pharmacology , Pruritus/chemically induced , Receptors, AMPA/antagonists & inhibitors , Receptors, Bombesin/antagonists & inhibitors , Spinal Cord Dorsal Horn/drug effects
20.
Article in English | MEDLINE | ID: mdl-32087968

ABSTRACT

Peripheral nerve injury typically leads to chronic inflammation through recruitment of immune cells, which may induce neuropathic pain. We previously reported that M1-like macrophages at sites of peripheral nerve injury induced neuropathic pain; however, the involvement of other immune cells (e.g. M2-like macrophages) in the progression of neuropathic pain remains unclear. In addition, the immune responses that occur at sites of nerve injury have not been well characterized. In this study, we show that M2-like macrophages accumulate in injured nerves to participate in the clearance of dead or dying cells (i.e., efferocytosis). Because MerTK (a receptor of dead or dying cells) levels on the surface of macrophages are limited, it seems to induce the insufficient of efferocytosis, such that the levels of dead or dying cells cannot be controlled in injured nerves. Given that efferocytosis is pivotal for resolution of inflammation, our data suggest that insufficient efferocytosis is a contributing factor in the development of chronic inflammation in injured nerves.

SELECTION OF CITATIONS
SEARCH DETAIL
...