Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 79(10): 1603-7, 2015.
Article in English | MEDLINE | ID: mdl-26011511

ABSTRACT

We extracted collagen from moon jellyfish under neutral pH conditions and analyzed its amino acid composition, secondary structure, and thermal stability. The content of hydroxyproline was 4.3%, which is lower than that of other collagens. Secondary structure analysis using circular dichroism (CD) showed a typical collagen helix. The thermal stability of this collagen at pH 3.0 was lower than those from fish scale and pig skin, which also correlates closely with jellyfish collagen having lower hydroxyproline content. Because the solubility of jellyfish collagen used in this study at neutral pH was quite high, it was possible to analyze its structural and physical properties under physiological conditions. Thermodynamic analysis using CD and differential scanning calorimetry showed that the thermal stability at pH 7.5 was higher than at pH 3.0, possibly due to electrostatic interactions. During the process of unfolding, fibrillation would occur only at neutral pH.


Subject(s)
Amino Acids/analysis , Collagen/chemistry , Hydroxyproline/analysis , Scyphozoa/chemistry , Animals , Collagen/isolation & purification , Hot Temperature , Hydrogen-Ion Concentration , Protein Stability , Protein Structure, Secondary , Protein Unfolding , Solubility , Static Electricity , Thermodynamics
2.
BMC Biotechnol ; 9: 98, 2009 Dec 08.
Article in English | MEDLINE | ID: mdl-19995451

ABSTRACT

BACKGROUND: We aimed to study the effects of intra-articular injection of jellyfish mucin (qniumucin) on articular cartilage degeneration in a model of osteoarthritis (OA) created in rabbit knees by resection of the anterior cruciate ligament. Qniumucin was extracted from Aurelia aurita (moon jellyfish) and Stomolophus nomurai (Nomura's jellyfish) and purified by ion exchange chromatography. The OA model used 36 knees in 18 Japanese white rabbits. Purified qniumucin extracts from S. nomurai or A. aurita were used at 1 mg/ml. Rabbits were divided into four groups: a control (C) group injected with saline; a hyaluronic acid (HA)-only group (H group); two qniumucin-only groups (M groups); and two qniumucin + HA groups (MH groups). One milligram of each solution was injected intra-articularly once a week for 5 consecutive weeks, starting from 4 weeks after surgery. Ten weeks after surgery, the articular cartilage was evaluated macroscopically and histologically. RESULTS: In the C and M groups, macroscopic cartilage defects extended to the subchondral bone medially and laterally. When the H and both MH groups were compared, only minor cartilage degeneration was observed in groups treated with qniumucin in contrast to the group without qniumucin. Histologically, densely safranin-O-stained cartilage layers were observed in the H and two MH groups, but cartilage was strongly maintained in both MH groups. CONCLUSION: At the concentrations of qniumucin used in this study, injection together with HA inhibited articular cartilage degeneration in this model of OA.


Subject(s)
Mucins/pharmacology , Osteoarthritis, Knee/drug therapy , Scyphozoa/chemistry , Animals , Anterior Cruciate Ligament Injuries , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Disease Models, Animal , Female , Hyaluronic Acid/pharmacology , Injections, Intra-Articular , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...