Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
2.
J Environ Radioact ; 218: 106252, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32421576

ABSTRACT

The mobility of 137Cs in soil decreases with time owing to fixation by micaceous minerals. Such ageing is a critical parameter for estimating and predicting annual change in 137Cs contamination risk of agricultural products. The decrease in the exchangeable fraction of 137Cs has traditionally been used as an index of the 137Cs ageing. Under field conditions, however, exchangeable 137Cs is influenced by several environmental factors. In this study, we propose a new index to evaluate the 137Cs ageing with minimum influence of environmental factors. The ratio of the exchangeable 137Cs fraction to exchangeable fraction of 133Cs ((137Cs/133Cs)exch) eliminates the influence of environmental factors on exchangeable 137Cs. We assessed the applicability of the (137Cs/133Cs)exch index, using a four-year field study of a rice paddy in allophanic Andosol, starting 200 days after the Fukushima Dai-ichi Nuclear Power Plant accident. The influence of K fertilization was also investigated. The 137Cs and 133Cs exchangeable fractions varied together, indicating that both were similarly controlled by environmental factors. The values of (137Cs/133Cs)exch decreased with time, reflecting 137Cs fixation by the ageing. The half-time of the (137Cs/133Cs)exch decline was 6.6-17.7 years. Relative to K fertilization, the lack of K fertilization seemed to affect the 137Cs ageing in two ways: the early 137Cs fixation progressed more rapidly, probably because fewer competing K+ ions were present, and the long-term ageing process was occasionally hampered, probably by the release of reserve K from micaceous minerals. The (137Cs/133Cs)exch values were similar to the ratio of the 137Cs to 133Cs transfer factor of the rice straw. Thus, we conclude that the (137Cs/133Cs)exch index is reliable for evaluating the 137Cs ageing, decrease in 137Cs mobility caused by the diffusion into micaceous mineral interlayer, in the field.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Radiation Monitoring , Soil Pollutants, Radioactive , Fertilizers , Ions , Japan , Minerals , Potassium
3.
Environ Sci Pollut Res Int ; 23(17): 17095-104, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27211094

ABSTRACT

In early April 2011, radiostrontium was accidentally released from the Fukushima Daiichi Nuclear Power Plant to the Pacific coast of eastern Japan. We developed a simple procedure to analyze radiostrontium levels in marine mussels (Septifer virgatus) and seawater using crown ether (Sr Resin; Eichrom). Then, we used our method to describe the spatial and temporal distribution of radiostrontium in mussels and seawater on the Pacific coast of eastern Japan from 2011 to 2013 and for 2015. Activity of (90)Sr in mussels and seawater decreased with distance from the Fukushima Daiichi Nuclear Power Plant and between 2011 and 2013 tended to be higher in areas south of the Fukushima Daiichi Nuclear Power Plant than to the north of it. Activity in mussels and seawater also tended to decrease from 2011 to 2013 and by 2015 had reached levels experienced prior to the Fukushima accident. Our results suggest that radiostrontium discharged from the Fukushima Daiichi Nuclear Power Plant was dispersed by coastal currents in a southerly direction along the Pacific coast of eastern Japan from 2011 to 2013, following which its activity decreased to background levels by 2015.


Subject(s)
Bivalvia/chemistry , Fukushima Nuclear Accident , Radiation Monitoring , Strontium Radioisotopes/analysis , Water Pollutants, Radioactive/analysis , Animals , Japan , Pacific Ocean , Seawater
4.
J Environ Radioact ; 157: 102-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27032341

ABSTRACT

Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on (137)Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ((133)Cs) in the plants was also determined as an analogue for predicting (137)Cs behavior after long-term aging of soil (137)Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher (137)Cs and (133)Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on (137)Cs and (133)Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between (137)Cs and (133)Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period enhances uptake of both (137)Cs and (133)Cs.


Subject(s)
Agricultural Irrigation , Cesium Isotopes/metabolism , Oryza/metabolism , Soil Pollutants/metabolism , Fertilizers , Oryza/drug effects , Potassium/pharmacology
5.
J Environ Radioact ; 147: 33-42, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26026983

ABSTRACT

A pot cultivation experiment was conducted to elucidate the influence of the nonexchangeable potassium (K) of mica on radiocesium ((137)Cs) uptake by paddy rice (Oryza sativa L. cv. Koshihikari), and to evaluate the potential of mica application as a countermeasure to reduce radiocesium transfer from soil to paddy rice. The increase in the exchangeable K concentrations of soils, measured before planting, due to mica (muscovite, biotite, and phlogopite) application was negligible. However, in trioctahedral mica (biotite and phlogopite)-treated soil, the release of nonexchangeable K from the mica interlayer maintained the soil-solution K at a higher level during the growing season in comparison to the control, and consequently decreased the (137)Cs transfer factor for brown rice (TF). The sodium tetraphenylboron (TPB)-extractable K concentration of the soils, measured before planting, was strongly negatively correlated with the TF, whereas the exchangeable K concentration of the soils, also measured before planting, was not correlated with the TF. Therefore, we conclude that TPB-extractable K is more reliable than exchangeable K as a basis of fertilizer recommendations for radiocesium-contaminated paddy fields. Phlogopite-treated soils exhibited higher TPB-extractable K concentrations and lower TF values than biotite-treated soils. We thus conclude that phlogopite application is an effective countermeasure to reduce radiocesium uptake in paddy rice.


Subject(s)
Aluminum Silicates/metabolism , Cesium Radioisotopes/metabolism , Fertilizers/analysis , Oryza/metabolism , Potassium/metabolism , Soil Pollutants, Radioactive/metabolism , Ferrous Compounds/metabolism , Japan , Oryza/growth & development
6.
Environ Sci Technol ; 38(4): 1038-44, 2004 Feb 15.
Article in English | MEDLINE | ID: mdl-14998016

ABSTRACT

The behavior of As in paddy fields is of great interest considering high As contents of groundwater in several Asian countries where rice is the main staple. We determined the concentrations of Fe, Mn, and As in soil, soil water, and groundwater samples collected at different depths down to 2 m in an experimental paddy field in Japan during the cycle of flooded and non-flooded periods. In addition, we measured the oxidation states of Fe, Mn, and As in situ in soil samples using X-ray absorption near-edge structure (XANES) and conducted sequential extraction of the soil samples. The results show that Fe (hydr)oxide hosts As in soil. Arsenic in irrigation waters is incorporated in Fe (hydr)oxide in soil during the non-flooded period, and the As is quickly released from soil to water during the flooded period because of reductive dissolution of the Fe (hydr)oxide phase and reduction of As from As(V) to As(III). The enhancement of As dissolution by the reduction of As is supported by high As/Fe ratios of soil water during the flooded period and our laboratory experiments where As(III) concentrations and As(III)/As(V) ratios in submerged soil were monitored. Our work, primarily based on data from an actual paddy field, suggests that rice plants are enriched in As because the rice grows in flooded paddy fields when mobile As(III) is released to soil water.


Subject(s)
Arsenic/analysis , Disasters , Oryza/chemistry , Soil Pollutants/analysis , Soil Pollutants/pharmacokinetics , Water Pollutants/analysis , Arsenic/pharmacokinetics , Environmental Monitoring , Oxidation-Reduction , Solubility , Water Pollutants/pharmacokinetics , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...