Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
Add more filters










Publication year range
1.
Bioeng Transl Med ; 9(3): e10642, 2024 May.
Article in English | MEDLINE | ID: mdl-38818118

ABSTRACT

Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.

2.
Nat Chem ; 16(7): 1113-1124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38553587

ABSTRACT

Understanding the relationship between a polypeptide sequence and its phase separation has important implications for analysing cellular function, treating disease and designing novel biomaterials. Several sequence features have been identified as drivers for protein liquid-liquid phase separation (LLPS), schematized as a 'molecular grammar' for LLPS. Here we further probe how sequence modulates phase separation and the material properties of the resulting condensates, targeting sequence features previously overlooked in the literature. We generate sequence variants of a repeat polypeptide with either no charged residues, high net charge, no glycine residues or devoid of aromatic or arginine residues. All but one of 12 variants exhibited LLPS, albeit to different extents, despite substantial differences in composition. Furthermore, we find that all the condensates formed behaved like viscous fluids, despite large differences in their viscosities. Our results support the model of multiple interactions between diverse residue pairs-not just a handful of residues-working in tandem to drive the phase separation and dynamics of condensates.


Subject(s)
Peptides , Peptides/chemistry , Proteins/chemistry , Phase Transition , Viscosity , Amino Acid Sequence , Liquid-Liquid Extraction/methods , Phase Separation
3.
Biomacromolecules ; 25(4): 2408-2422, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38546162

ABSTRACT

Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.


Subject(s)
Drug Delivery Systems , Peptides , Delayed-Action Preparations , Peptides/chemistry , Doxorubicin/chemistry , Collagen/chemistry , Extracellular Matrix , Elastin/chemistry
4.
Biomacromolecules ; 25(4): 2449-2461, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38484154

ABSTRACT

Peptide-based materials are diverse candidates for self-assembly into modularly designed and stimuli-responsive nanostructures with precisely tunable compositions. Here, we genetically fused computationally designed coiled coil-forming peptides to the N- and C-termini of compositionally distinct multistimuli-responsive resilin-like polypeptides (RLPs) of various lengths. The successful expression of these hybrid polypeptides in bacterial hosts was confirmed through techniques such as gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism spectroscopy and ultraviolet-visible turbidimetry demonstrated that despite the fusion of disparate structural and responsive units, the coiled coils remained stable in the hybrid polypeptides, and the sequence-encoded differences in thermoresponsive phase separation of the RLPs were preserved. Cryogenic transmission electron microscopy and coarse-grained modeling showed that after thermal annealing in solution, the hybrid polypeptides adopted a closed loop conformation and assembled into nanofibrils capable of further hierarchically organizing into cluster structures and ribbon-like structures mediated by the self-association tendency of the RLPs.


Subject(s)
Insect Proteins , Peptides , Peptides/genetics , Peptides/chemistry , Molecular Conformation , Microscopy, Electron, Transmission , Circular Dichroism
5.
Chemistry ; 30(30): e202400582, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38501912

ABSTRACT

The unique biophysical and biochemical properties of intrinsically disordered proteins (IDPs) and their recombinant derivatives, intrinsically disordered protein polymers (IDPPs) offer opportunities for producing multistimuli-responsive materials; their sequence-encoded disorder and tendency for phase separation facilitate the development of multifunctional materials. This review highlights the strategies for enhancing the structural diversity of elastin-like polypeptides (ELPs) and resilin-like polypeptides (RLPs), and their self-assembled structures via genetic fusion to ordered motifs such as helical or beta sheet domains. In particular, this review describes approaches that harness the synergistic interplay between order-promoting and thermoresponsive building blocks to design hybrid biomaterials, resulting in well-structured, stimuli-responsive supramolecular materials ordered on the nanoscale.


Subject(s)
Biocompatible Materials , Elastin , Peptides , Biocompatible Materials/chemistry , Elastin/chemistry , Elastin/genetics , Peptides/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Temperature , Humans , Insect Proteins
6.
Soft Matter ; 20(8): 1736-1745, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38288734

ABSTRACT

Hydrogel microparticles ranging from 0.1-100 µm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 µm and 82 ± 25 µm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.


Subject(s)
Hydrogels , Microgels , Animals , Horses , Hydrogels/chemistry , Liposomes , Microfluidics , Rheology
7.
Biomacromolecules ; 24(8): 3729-3741, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37525441

ABSTRACT

Microstructured hydrogels are promising platforms to mimic structural and compositional heterogeneities of the native extracellular matrix (ECM). The current state-of-the-art soft matter patterning techniques for generating ECM mimics can be limited owing to their reliance on specialized equipment and multiple time- and energy-intensive steps. Here, a photocross-linking methodology that traps various morphologies of phase-separated multicomponent formulations of compositionally distinct resilin-like polypeptides (RLPs) is reported. Turbidimetry and quantitative 1H NMR spectroscopy were utilized to investigate the sequence-dependent liquid-liquid phase separation of multicomponent solutions of RLPs. Differences between the intermolecular interactions of two different photocross-linkable RLPs and a phase-separating templating RLP were exploited for producing microstructured hydrogels with tunable control over pore diameters (ranging from 1.5 to 150 µm) and shear storage moduli (ranging from 0.2 to 5 kPa). The culture of human mesenchymal stem cells demonstrated high viability and attachment on microstructured hydrogels, suggesting their potential for developing customizable platforms for regenerative medicine applications.


Subject(s)
Hydrogels , Regenerative Medicine , Humans , Hydrogels/chemistry , Peptides/chemistry , Insect Proteins/chemistry
8.
Angew Chem Int Ed Engl ; 62(25): e202301331, 2023 06 19.
Article in English | MEDLINE | ID: mdl-36988077

ABSTRACT

Thermoresponsive resilin-like polypeptides (RLPs) of various lengths were genetically fused to two different computationally designed coiled coil-forming peptides with distinct thermal stability, to develop new strategies to assemble coiled coil peptides via temperature-triggered phase separation of the RLP units. Their successful production in bacterial expression hosts was verified via gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism (CD) spectroscopy, ultraviolet-visible (UV/Vis) turbidimetry, and dynamic light scattering (DLS) measurements confirmed the stability of the coiled coils and showed that the thermosensitive phase behavior of the RLPs was preserved in the genetically fused hybrid polypeptides. Cryogenic-transmission electron microscopy and coarse-grained modeling revealed that functionalizing the coiled coils with thermoresponsive RLPs leads to their thermally triggered noncovalent assembly into nanofibrillar assemblies.


Subject(s)
Gene Fusion , Peptides , Protein Structure, Secondary , Peptides/chemistry , Protein Domains , Microscopy, Electron, Transmission , Circular Dichroism
9.
ACS Appl Mater Interfaces ; 15(13): 16434-16447, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36961242

ABSTRACT

Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.


Subject(s)
Vascular Endothelial Growth Factor A , Wound Healing , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Hyaluronic Acid/chemistry , Endothelial Cells/metabolism , Collagen/chemistry
10.
Mol Pharm ; 20(3): 1696-1708, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36707500

ABSTRACT

Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Wound Infection , Humans , Vancomycin , Anti-Bacterial Agents/pharmacology , Liposomes/pharmacology , Microbial Sensitivity Tests , Collagen/pharmacology
11.
Adv Drug Deliv Rev ; 193: 114673, 2023 02.
Article in English | MEDLINE | ID: mdl-36574920

ABSTRACT

Injectable nanocarriers and hydrogels have found widespread use in a variety of biomedical applications such as local and sustained biotherapeutic cargo delivery, and as cell-instructive matrices for tissue engineering. Recent advances in the development and application of recombinant protein-based materials as injectable platforms under physiological conditions have made them useful platforms for the development of nanoparticles and tissue engineering matrices, which are reviewed in this work. Protein-engineered biomaterials are highly customizable, and they provide distinctly tunable rheological properties, encapsulation efficiencies, and delivery profiles. In particular, the key advantages of emerging technologies which harness the stimuli-responsive properties of recombinant polypeptide-based materials are highlighted in this review.


Subject(s)
Biocompatible Materials , Tissue Engineering , Humans , Hydrogels , Recombinant Proteins , Peptides
12.
Acta Biomater ; 150: 138-153, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35907557

ABSTRACT

Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-ß1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM has significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and a hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.


Subject(s)
Hyaluronic Acid , Vascular Endothelial Growth Factor A , Animals , Collagen/chemistry , Fibroblasts/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
13.
Pharmaceutics ; 14(5)2022 May 15.
Article in English | MEDLINE | ID: mdl-35631649

ABSTRACT

Protein therapeutics have become increasingly popular for the treatment of a variety of diseases owing to their specificity to targets of interest. However, challenges associated with them have limited their use for a range of ailments, including the limited options available for local controlled delivery. To address this challenge, degradable hydrogel microparticles, or microgels, loaded with model biocargoes were created with tunable release profiles or triggered burst release using chemistries responsive to endogenous or exogeneous stimuli, respectively. Specifically, microfluidic flow-focusing was utilized to form homogenous microgels with different spontaneous click chemistries that afforded degradation either in response to redox environments for sustained cargo release or light for on-demand cargo release. The resulting microgels were an appropriate size to remain localized within tissues upon injection and were easily passed through a needle relevant for injection, providing means for localized delivery. Release of a model biopolymer was observed over the course of several weeks for redox-responsive formulations or triggered for immediate release from the light-responsive formulation. Overall, we demonstrate the ability of microgels to be formulated with different materials chemistries to achieve various therapeutic release modalities, providing new tools for creation of more complex protein release profiles to improve therapeutic regimens.

14.
Expert Opin Drug Deliv ; 18(11): 1723-1740, 2021 11.
Article in English | MEDLINE | ID: mdl-34696691

ABSTRACT

INTRODUCTION: The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function. AREAS COVERED: This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included. EXPERT OPINION: Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.


Subject(s)
Elastin , Extracellular Matrix , Collagen , Hyaluronic Acid , Peptides
15.
Biomater Sci ; 9(18): 6266-6281, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34369483

ABSTRACT

Induced pluripotent stem cells (iPSCs) provide an extraordinary tool for disease modeling owing to their potential to differentiate into the desired cell type. The differentiation of iPSCs is typically performed on 2-dimensional monolayers of stromal cell or animal tissue derived extracellular matrices. Recent advancements in disease modeling have utilized iPSCs in 3-dimensional (3D) cultures to study diseases such as muscular dystrophy, cardiomyopathy, and pulmonary fibrosis. However, these approaches are yet to be explored in modeling the hematological malignancies. Transient myeloproliferative disorder (TMD) is a preleukemic stage, which is induced in 10-20% of children with trisomy 21 possessing the pathognomonic mutation in the transcription factor GATA1. In this study, we established a synthetic 3D iPSC culture system for modeling TMD via hematopoietic differentiation of customized iPSCs. A chemically cross-linkable PEG hydrogel decorated with integrin binding peptide was found to be permissive of hematopoietic differentiation of iPSCs. It provided a cost-effective system for the generation of hematopoietic stem and progenitor cells (HSPCs) with higher yield of early HSPCs compared to traditional 2D culture on Matrigel coated dishes. Characterization of the HSPCs produced from the iPSC lines cultured in 3D showed that the erythroid population was reduced whereas the megakaryoid and myeloid populations were significantly increased in GATA1 mutant trisomic line compared to disomic or trisomic lines with wild-type GATA1, consistent with TMD characteristics. In conclusion, we have identified a cost-effective tunable 3D hydrogel system to model TMD.


Subject(s)
Down Syndrome , Hematopoietic Stem Cell Transplantation , Induced Pluripotent Stem Cells , Myeloproliferative Disorders , Animals , Cell Differentiation , Down Syndrome/genetics , Hydrogels , Myeloproliferative Disorders/genetics
16.
Macromol Biosci ; 21(9): e2100129, 2021 09.
Article in English | MEDLINE | ID: mdl-34145967

ABSTRACT

Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.


Subject(s)
Intrinsically Disordered Proteins , Nanostructures , Biocompatible Materials/chemistry , Hydrogels/chemistry , Polymers/chemistry
17.
ACS Biomater Sci Eng ; 7(9): 4244-4257, 2021 09 13.
Article in English | MEDLINE | ID: mdl-33464811

ABSTRACT

Heterogeneities in hydrogel scaffolds are known to impact the performance of cells in cell-laden materials constructs, and we have employed the phase separation of resilin-like polypeptides (RLPs) as a means to generate such materials. Here, we study the compositional features of resilin-like polypeptides (RLPs) that further enable our control of their liquid-liquid phase separation (LLPS) and how such control impacts the formation of microstructured hydrogels. The evaluation of the phase separation of RLPs in solutions of ammonium sulfate offers insights into the sequence-dependent LLPS of the RLP solutions, and atomistic simulations, along with 2D-nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY) 1H NMR, suggest specific amino acid interactions that may mediate this phase behavior. The acrylamide functionalization of RLPs enables their photo-cross-linking into hydrogels and also enhances the phase separation of the polypeptides. A heating-cooling protocol promotes the formation of stable emulsions that yield different microstructured morphologies with tunable rheological properties. These findings offer approaches for choosing RLP compositions with phase behaviors that can be easily tuned with differences in temperature to control the resulting morphology and mechanical behavior of the heterogeneous hydrogels in regimes useful for biological applications.


Subject(s)
Hydrogels , Insect Proteins , Peptides , Rheology
18.
Acta Biomater ; 122: 220-235, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33359292

ABSTRACT

Cord blood (CB) mononuclear cell populations have demonstrated significant promise in biomaterials-based regenerative therapies; however, the contributions of monocyte and macrophage subpopulations towards proper tissue healing and regeneration are not well understood, and the phenotypic responses of macrophage to microenvironmental cues have not been well-studied. In this work, we evaluated the effects of cytokine stimulation and altered substrate stiffness. Macrophage derived from CB CD14+ monocytes adopted distinct inflammatory (M1) and anti-inflammatory (M2a and M2c) phenotypes in response to cytokine stimulation (M1: lipopolysaccharide (LPS) and interferon (IFN-γ); M2a: interleukin (IL)-4 and IL-13; M2c: IL-10) as determined through expression of relevant cell surface markers and growth factors. Cytokine-induced macrophage readily altered their phenotypes upon sequential administration of different cytokine cocktails. The impact of substrate stiffness on macrophage phenotype was evaluated by seeding CB-derived macrophage on 3wt%, 6wt%, and 14wt% poly(ethylene glycol)-based hydrogels, which exhibited swollen shear moduli of 0.1, 3.4, and 10.3 kPa, respectively. Surface marker expression and cytokine production varied depending on modulus, with anti-inflammatory phenotypes increasing with elevated substrate stiffness. Integration of specific hydrogel moduli and cytokine cocktail treatments resulted in the differential regulation of macrophage phenotypic biomarkers. These data suggest that CB-derived macrophages exhibit predictable behaviors that can be directed and finely tuned by combinatorial modulation of substrate physical properties and cytokine profiles.


Subject(s)
Fetal Blood , Macrophages , Cell Differentiation , Cytokines , Phenotype
19.
J Biomater Sci Polym Ed ; 32(5): 635-656, 2021 04.
Article in English | MEDLINE | ID: mdl-33231137

ABSTRACT

The development of hybrid hydrogels has been of great interest over recent decades, especially in the field of biomaterials. Such hydrogels provide various opportunities in tissue engineering, drug delivery, and regenerative medicine due to their ability to mimic cellular environments, sequester and release therapeutic agents, and respond to stimuli. Herein we report the synthesis and characterization of an injectable poly(ethylene glycol) hydrogel crosslinked via thiol-maleimide reactions and containing both chemically crosslinked temperature-sensitive liposomes (TSLs) and matrix metalloproteinase-sensitive peptide crosslinks. Rheological studies demonstrate that the hydrogel is mechanically stable and can be synthesized to achieve a range of physically applicable moduli. Experiments characterizing the in situ drug delivery and degradation of these materials indicate that the TSL gel responds to both thermal and enzymatic stimuli in a local environment. Doxorubicin, a widely used anticancer drug, was loaded in the TSLs with a high encapsulation efficiency and the subsequent release was temperature dependent. Finally, TSLs did not compromise viability and proliferation of human and murine fibroblasts, supporting the use of these hydrogel-linked liposomes as a thermo-responsive drug carrier for controlled release.


Subject(s)
Biocompatible Materials , Liposomes , Animals , Drug Carriers , Drug Delivery Systems , Drug Liberation , Humans , Hydrogels , Mice , Polyethylene Glycols , Temperature
20.
PLoS One ; 15(12): e0244243, 2020.
Article in English | MEDLINE | ID: mdl-33370415

ABSTRACT

Adventitial fibroblasts (AFs) are critical mediators of vascular remodeling. However, the contributions of AFs towards development of vasculature and the specific mechanisms by which these cells regulate physiological expansion of the vasa vasorum, the specialized microvasculature that supplies nutrients to the vascular wall, are not well understood. To determine the regulatory role of AFs in microvascular endothelial cell (MVEC) neovasculogenesis and to investigate the regulatory pathways utilized for communication between the two cell types, AFs and MVECs were cultured together in poly(ethylene glycol)-based hydrogels. Following preliminary evaluation of a set of cell adhesion peptides (AG10, AG73, A2G78, YIGSR, RGD), 7.5wt% hydrogels containing 3 mM RGD were selected as these substrates did not initiate primitive tubule structures in 3D MVEC monocultures, thus providing a passive platform to study AF-MVEC interaction. The addition of AFs to hydrogels promoted MVEC viability; however, increasing AF density within hydrogels stimulated MVEC proliferation, increased microvessel density and size, and enhanced deposition of basement membrane proteins, collagen IV and laminin. Importantly, AF-MVEC communication through the transforming growth factor beta (TGF-ß)/activin receptor-like kinase 5 (ALK5) signaling pathway was observed to mediate microvessel formation, as inhibition of ALK5 significantly decreased MVEC proliferation, microvessel formation, mural cell recruitment, and basement membrane production. These data indicate that AFs regulate MVEC neovasculogenesis and suggest that therapeutics targeting the TGF-ß/ALK5 pathway may be useful for regulation of vasculogenic and anti-vasculogenic responses.


Subject(s)
Aorta/physiology , Cell Communication , Connective Tissue/physiology , Endothelial Cells/physiology , Fibroblasts/physiology , Neovascularization, Physiologic , Receptor, Transforming Growth Factor-beta Type I/metabolism , Transforming Growth Factor beta1/metabolism , Aorta/cytology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Coculture Techniques , Endothelial Cells/cytology , Fibroblasts/cytology , Humans , Receptor, Transforming Growth Factor-beta Type I/genetics , Signal Transduction , Transforming Growth Factor beta1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...