Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sustain Resour Manag ; 1(6): 1291-1301, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38957680

ABSTRACT

The need for sustainable agriculture amid a growing population and challenging climatic conditions is hindered by the environmental repercussions of widespread fertilizer use, resulting in the accumulation of metal ions and the loss of micronutrients. The present study provides an approach to improve the efficiency of nanofertilizers by controlling the release of copper (Cu) ions from copper oxide (CuO) nanofertilizers through bioionic liquids based on plant growth regulators (PGR-ILs). A 7-day study was conducted to understand the kinetics of Cu ion release in aqueous solution of five different PGR-ILs, with choline ascorbate ([Cho][Asc]) or choline salicylate ([Cho][Sal]) leading to 200- to 700-fold higher dissolution of Cu ions in comparison to choline indole-3-acetate ([Cho][IAA]), choline indole-3-butyrate ([Cho][IBA]), and choline gibberellate ([Cho][GA3]). The tunable diffusion of Cu ions from CuO nanofertilizers using PGR-ILs is then applied in a foliar spray study, evaluating its impact on the growth phenotype, photosynthetic parameters, and carbon dioxide (CO2) sequestration in Nicotiana tabacum in a greenhouse. The results indicate that nanoformulations with lower concentrations of Cu ions in PGR-IL solutions exhibit superior outcomes in terms of plant length, net photosynthetic rate, dry biomass yield, and CO2 sequestration, emphasizing the critical role of dissolution kinetics in determining the effectiveness of PGR-IL-based nanoformulations for sustainable agriculture.

2.
J Proteomics ; 131: 93-103, 2016 Jan 10.
Article in English | MEDLINE | ID: mdl-26476145

ABSTRACT

Mycoplasma mycoides subsp. mycoides (Mmm) is the causative agent of contagious bovine pleuropneumonia (CBPP), a severe pleuropneumonia in cattle. The abnormal accumulation of pleural fluid, called pleural effusion (PE), is one of the characteristics of this disease. We performed a proteomic analysis of seven PE samples from experimentally infected cattle and characterized their composition with respect to bovine and Mmm proteins. We detected a total of 963 different bovine proteins. Further analysis indicated a strong enrichment of proteins involved in antigen processing, platelet activation and degranulation and apoptosis and an increased abundance of acute phase proteins.With regard to the pathogen, up to 108 viable mycoplasma cells per ml were detected in the PE supernatant. The proteomic analysis revealed 350 mycoplasma proteins, including proteins involved in virulence-associated processes like hydrogen peroxide (H2O2) production and capsule synthesis. The bovine proteins detected will aid to characterize the inflammasome during an acute pleuropneumonia in cattle and the identified mycoplasma proteins will serve as baseline data to be compared with in vitro studies to improve our understanding of pathogenicity mechanisms. Based on our results, we named the pleural effusion an "in vivo niche" of Mmm during the acute phase of CBPP. Biological significance: This is the first study on bovine pleural effusions derived from an infectious disease and the first approach to characterize the proteome of Mycoplasma mycoides in vivo. This study revealed a high number of viable Mmm cells in the pleural effusion. The bovine pleural effusion proteome during Mmm infection is qualitatively similar to plasma, but differs with respect to high abundance of acute phase proteins. On the other hand,Mmm in its natural host produces proteins involved in capsule synthesis, H2O2 production and induction of inflammatory response, supporting previous knowledge on mechanisms underlying the survival and virulence of this pathogen while inside the natural host. This knowledge forms a profound basis for testing the identified protein candidates for diagnostics or vaccines.


Subject(s)
Cattle Diseases/metabolism , Cattle Diseases/microbiology , Mycoplasma mycoides/metabolism , Pleural Effusion/veterinary , Pleuropneumonia, Contagious/metabolism , Pleuropneumonia, Contagious/microbiology , Animals , Bacterial Proteins/metabolism , Cattle , Mycoplasma mycoides/isolation & purification , Pleural Effusion/metabolism , Pleural Effusion/microbiology , Proteome/metabolism , Virulence Factors/metabolism
3.
Front Plant Sci ; 5: 341, 2014.
Article in English | MEDLINE | ID: mdl-25101099

ABSTRACT

ROP-type GTPases of plants function as molecular switches within elementary signal transduction pathways such as the regulation of ROS synthesis via activation of NADPH oxidases (RBOH-respiratory burst oxidase homolog in plants). Previously, we reported that silencing of the Medicago truncatula GTPase MtROP9 led to reduced ROS production and suppressed induction of ROS-related enzymes in transgenic roots (MtROP9i) infected with pathogenic (Aphanomyces euteiches) and symbiotic microorganisms (Glomus intraradices, Sinorhizobium meliloti). While fungal infections were enhanced, S. meliloti infection was drastically impaired. In this study, we investigate the temporal proteome response of M. truncatula MtROP9i transgenic roots during the same microbial interactions under conditions of deprived potential to synthesize ROS. In comparison with control roots (Mtvector), we present a comprehensive proteomic analysis using sensitive MS protein identification. For four early infection time-points (1, 3, 5, 24 hpi), 733 spots were found to be different in abundance: 213 spots comprising 984 proteins (607 unique) were identified after S. meliloti infection, 230 spots comprising 796 proteins (580 unique) after G. intraradices infection, and 290 spots comprising 1240 proteins (828 unique) after A. euteiches infection. Data evaluation by GelMap in combination with a heatmap tool allowed recognition of key proteome changes during microbial interactions under conditions of hampered ROS synthesis. Overall, the number of induced proteins in MtROP9i was low as compared with controls, indicating a dual function of ROS in defense signaling as well as alternative response patterns activated during microbial infection. Qualitative analysis of induced proteins showed that enzymes linked to ROS production and scavenging were highly induced in control roots, while in MtROP9i the majority of proteins were involved in alternative defense pathways such as cell wall and protein degradation.

SELECTION OF CITATIONS
SEARCH DETAIL
...