Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biofabrication ; 11(3): 035016, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30943457

ABSTRACT

One promising strategy to reconstruct osteochondral defects relies on 3D bioprinted three-zonal structures comprised of hyaline cartilage, calcified cartilage, and subchondral bone. So far, several studies have pursued the regeneration of either hyaline cartilage or bone in vitro while-despite its key role in the osteochondral region-only few of them have targeted the calcified layer. In this work, we present a 3D biomimetic hydrogel scaffold containing ß-tricalcium phosphate (TCP) for engineering calcified cartilage through a co-axial needle system implemented in extrusion-based bioprinting process. After a thorough bioink optimization, we showed that 0.5% w/v TCP is the optimal concentration forming stable scaffolds with high shape fidelity and endowed with biological properties relevant for the development of calcified cartilage. In particular, we investigate the effect induced by ceramic nano-particles over the differentiation capacity of bioprinted bone marrow-derived human mesenchymal stem cells in hydrogel scaffolds cultured up to 21 d in chondrogenic media. To confirm the potential of the presented approach to generate a functional in vitro model of calcified cartilage tissue, we evaluated quantitatively gene expression of relevant chondrogenic (COL1, COL2, COL10A1, ACAN) and osteogenic (ALPL, BGLAP) gene markers by means of RT-qPCR and qualitatively by means of fluorescence immunocytochemistry.


Subject(s)
Bioprinting , Calcification, Physiologic/drug effects , Calcium Phosphates/chemistry , Hyaline Cartilage/physiology , Hydrogels/pharmacology , Models, Biological , Printing, Three-Dimensional , Tissue Engineering/methods , Chondrogenesis/drug effects , Extracellular Matrix Proteins/metabolism , Humans , Hyaline Cartilage/drug effects , Ink , Mesenchymal Stem Cells/cytology , Optical Imaging , RNA, Messenger/genetics , RNA, Messenger/metabolism , Temperature , Tissue Scaffolds/chemistry , Viscosity
2.
Micron ; 107: 79-84, 2018 04.
Article in English | MEDLINE | ID: mdl-29453143

ABSTRACT

Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology.

3.
J Mater Chem B ; 6(19): 3116-3127, 2018 May 21.
Article in English | MEDLINE | ID: mdl-32254346

ABSTRACT

Tissue engineering holds great potential in the production of functional substitutes to restore, maintain or improve the functionality in defective or lost tissues. So far, a great variety of techniques and approaches for fabrication of scaffolds have been developed and evaluated, allowing researchers to tailor precisely the morphological, chemical and mechanical features of the final constructs. Electrospinning of biocompatible and biodegradable polymers is a popular method for producing homogeneous nanofibrous structures, which might reproduce the nanosized organization of the tendons. Moreover, composite scaffolds obtained by incorporating nanoparticles within electrospun fibers have been lately explored in order to enhance the properties and the functionalities of the pristine polymeric constructs. The present study is focused on the design and fabrication of biocompatible electrospun nanocomposite fibrous scaffolds for tendon regeneration. A mixture of poly(amide 6) and poly(caprolactone) is electrospun to generate constructs with mechanical properties comparable to that of native tendons. To improve the biological activity of the constructs and modify their topography, wettability, stiffness and degradation rate, we incorporated silica particles into the electrospun substrates. The use of nanosize silica particles enables us to form bead-on-fiber topography, allowing the better exposure of ceramic particles to better profit their beneficial characteristics. In vitro biocompatibility studies using L929 fibroblasts demonstrated that the presence of 20 wt% of silica nanoparticles in the engineered scaffolds enhanced cell spreading and proliferation as well as extracellular matrix deposition. The results reveal that the electrospun nanocomposite scaffold represents an interesting candidate for tendon tissue engineering.

4.
Micron ; 72: 1-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25710786

ABSTRACT

Electrospun polymeric submicron and nanofibers can be used as tissue engineering scaffolds in regenerative medicine. In physiological conditions fibers are subjected to stresses and strains from the surrounding biological environment. Such stresses can cause permanent deformation or even failure to their structure. Therefore, there is a growing necessity to characterize their mechanical properties, especially at the nanoscale. Atomic force microscopy is a powerful tool for the visualization and probing of selected mechanical properties of materials in biomedical sciences. Image resolution of atomic force microscopy techniques depends on the equipment quality and shape of the scanning probe. The probe radius and aspect ratio has huge impact on the quality of measurement. In the presented work the nanomechanical properties of four different polymer based electrospun fibers were tested using PeakForce Quantitative NanoMechanics atomic force microscopy, with standard and modified scanning probes. Standard, commercially available probes have been modified by etching using focused ion beam (FIB). Results have shown that modified probes can be used for mechanical properties mapping of biomaterial in the nanoscale, and generate nanomechanical information where conventional tips fail.


Subject(s)
Microscopy, Atomic Force/methods , Nanofibers/ultrastructure , Nanotechnology/methods , Biocompatible Materials , Stress, Mechanical , Tissue Scaffolds
5.
J Biomed Mater Res B Appl Biomater ; 100(4): 1093-102, 2012 May.
Article in English | MEDLINE | ID: mdl-22438340

ABSTRACT

One of the biggest challenges in peripheral nerve tissue engineering is to create an artificial nerve graft that could mimic the extracellular matrix (ECM) and assist in nerve regeneration. Bio-composite nanofibrous scaffolds made from synthetic and natural polymeric blends provide suitable substrate for tissue engineering and it can be used as nerve guides eliminating the need of autologous nerve grafts. Nanotopography or orientation of the fibers within the scaffolds greatly influences the nerve cell morphology and outgrowth, and the alignment of the fibers ensures better contact guidance of the cells. In this study, poly (L-lactic acid)-co-poly(ε-caprolactone) or P(LLA-CL), collagen I and collagen III are utilized for the fabrication of nanofibers of different compositions and orientations (random and aligned) by electrospinning. The morphology, mechanical, physical, and chemical properties of the electrospun scaffolds along with their biocompatibility using C17.2 nerve stem cells are studied to identify the suitable material compositions and topography of the electrospun scaffolds required for peripheral nerve regeneration. Aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds with average diameter of 253 ± 102 nm were fabricated and characterized with a tensile strength of 11.59 ± 1.68 MPa. Cell proliferation studies showed 22% increase in cell proliferation on aligned P(LLA-CL)/collagen I/collagen III scaffolds compared with aligned pure P(LLA-CL) scaffolds. Results of our in vitro cell proliferation, cell-scaffold interaction, and neurofilament protein expression studies demonstrated that the electrospun aligned P(LLA-CL)/collagen I/collagen III nanofibrous scaffolds mimic more closely towards the ECM of nerve and have great potential as a substrate for accelerated regeneration of the nerve.


Subject(s)
Collagen/chemistry , Electrochemistry/methods , Nanofibers/chemistry , Polyesters/chemistry , Tissue Engineering/instrumentation , Tissue Engineering/methods , Animals , Biocompatible Materials , Cell Proliferation , Cerebellum/cytology , Immunohistochemistry/methods , Materials Testing , Mice , Nerve Regeneration , Neurons/metabolism , Pressure , Spectroscopy, Fourier Transform Infrared/methods , Stem Cells/cytology , Tensile Strength
6.
Eur J Pharm Biopharm ; 72(3): 595-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19264127

ABSTRACT

The objective of this study was to investigate and to better understand the properties of buccal mucosa as a semipermeable membrane and a portal for drug administration by iontophoretic and electroosmotic means. In vitro experiments showed that buccal mucosa at the pH of about 7.4 behaved as a cation-exchange membrane and non-linear resistor. It had lower resistance and was more permeable for water than a skin. The electroosmotic volume flow through mucosa depended on current density, mucosa resistance and electrolyte concentration. Sodium dodecyl sulfate (in concentration range 0.001-0.005 mol L(-1)) and urea (in concentration range 0.42-1.67 mol L(-1)) did not promote a water transfer through buccal mucosa, however, both substances enhanced flow through the skin.


Subject(s)
Electroosmosis/methods , Iontophoresis/methods , Mouth Mucosa/metabolism , Administration, Buccal , Animals , Mouth Mucosa/chemistry , Skin Absorption/physiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...