Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477517

ABSTRACT

Welding is an important process in terms of manufacturing components for various types of machines and structures. One of the vital and still unsolved issues is determining the quality and properties welded joint in an online manner. In this paper, a technique for prediction of joint hardness based on the sequence of thermogram acquired during welding process is proposed. First, the correspondence between temperature, welding linear energy and hardness was revealed and confirmed using correlation analysis. Using a linear regression model, relations between temperature and hardness were described. According to obtained results in the joint area, prediction error was as low as 1.25%, while for HAZ it exceeded 15%. Future work on optimizing model and input data for HAZ hardness prediction are planned.

2.
Materials (Basel) ; 13(22)2020 Nov 22.
Article in English | MEDLINE | ID: mdl-33266492

ABSTRACT

The article presents the results of research on the influence of temperature and time changes of the annealing process on the values and distribution of stresses in the simulated heat-affected zone of S700MC steel welded joints. For this purpose, tests were carried out on a thermal cycle simulator, as well as heating the prepared samples in accordance with the recorded welding thermal cycles, and then annealing at temperatures from 200 to 550 °C. The stresses values in the tested samples before and after the annealing process were measured by using X-ray diffraction (XRD). The performed tests were verified with the results of numerical analyses using the finite element method (FEM) performed in the VisualWeld (SYSWELD) environment as, on the one hand, the verification of the obtained results, and, on the other hand, the source of data for the development of a methodology for conducting analyses of heat treatment processes of S700MC steel welded structures. Also presented are three examples of numerical analyses for Gas Metal Arc (GMAW), laser and hybrid welding and then the annealing process of the obtained joints at selected temperatures. The main purpose of the work was to broaden the knowledge on the influence of annealing parameters on the values and distribution of stresses in welded joints, but also to signal the possibility of using modern software in engineering practice.

3.
Materials (Basel) ; 13(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32532080

ABSTRACT

The article presents new possibilities for modifying heat source models in numerical simulations of laser welding processes conducted using VisualWeld (SYSWELD) software. Due to the different power distributions and shapes of a laser beams, it was necessary to propose a modification of heat source models and methods of defining the heat introduced into a welded material in the case of simulations of welding processes using solid-state and high-power diode lasers. A solution was proposed in the form of modification of predefined heat source models in the case of simulations of welding processes using solid-state disc lasers and high-power diode lasers (HPDL). Based on the results of metallographic tests and the acquisition of thermal cycles of real laser welding processes, the process of calibration and validation of the proposed models of heat sources depending on the type of device used as well as the obtained shapes of fusion beads was carried out. The purpose and assumptions of this approach towards creating heat sources were also reported, comparing exemplary stresses and cumulative plastic strain distributions for the calculation variant using a standard and modified heat source model.

4.
Materials (Basel) ; 13(3)2020 Jan 29.
Article in English | MEDLINE | ID: mdl-32013167

ABSTRACT

The article presents a comparison of modern computational techniques used in numerical analyses of welding processes. The principles of the "transient" technique calculations with a moving heat source, the "macro-bead" (MBD) technique, with an imposed thermal cycle on a selected weld bead section and the "local-global" approach with shrinkage calculation technique were described. They can be used, depending on the variant chosen, both for individual, simple weld joints and those made of many beads or constructions containing dozens of welds and welded elements. Differences in the obtained results and time needed to perform calculations with four different calculation examples of single and multipass arc and laser beam welding processes were presented. The results of calculations of displacements and stresses distributions in the welded joints using various computational techniques were compared, as well as the calculation times with the described techniques. The numerical analyses in the SYSWELD software package have shown the differences between the described computational techniques, as well as an understanding of the benefits and disadvantages of using each of them. This knowledge allows preparing an efficient and fast optimization of the welding processes, often aimed at minimizing deformations in the first place, as well as detection of potential defects of both simple and complex welded structures. In general, the possibilities and flexibility of modern numerical calculation software have been presented.

5.
Materials (Basel) ; 12(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744077

ABSTRACT

This article presents examples of numerical simulations done based on the real experiments of S700MC steel T-joint laser and hybrid welding. Presented results of numerical analyses carried out using SYSWELD show the possibilities offered to contemporary engineers by modern software used to make numerical analyses of production processes. After calibration of a heat source models on the chosen examples of S700MC steel 10-mm-thick T-joint laser and hybrid welding, distributions of temperature fields, thermal cycles, distributions of individual metallurgical phases and hardness, and strains and plastic deformations in simulated processes were calculated for one selected joint from both mentioned methods. The results of the analysis allow determining both the differences in the stress distributions and their minimal and maximal values. This article also presents the benefits resulting from the use of such analyses, due to the significant savings in time and resources to be spent on the development of correct technologies for joining modern construction materials such as thermomechanically treated steels, especially given that some of the results are unavailable or very difficult to collect using conventional measurement methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...