Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37242461

ABSTRACT

The current study aimed to identify the crude drugs associated with drug-induced liver injury (DILI) in 148 Kampo medicines prescribed throughout Japan using the Japanese Adverse Drug Event Report (JADER) database, a large-scale spontaneous reporting system in Japan. First, we tabulated the number of DILI reports from the report-based dataset and the background information from the patient-based dataset. Thereafter, we combined the 126 crude drugs into 104 crude drug groups to examine multicollinearity. Finally, the reporting odds ratios (RORs), 95% confidence intervals, p values for Fisher's exact test, and number of reports were calculated for each crude group to identify those associated with DILI. Notably, the number of adverse event reports for DILI (63,955) exceeded that for interstitial lung disease (51,347), the most common adverse event. In total, 78 crude drug groups (90 crude drugs) were reported to have an ROR > 1, a p < 0.05, and ≥10 reported cases. Our results highlight DILI as an essential issue, given that it was among the most frequently reported adverse drug reactions. We were able to clearly identify the crude drugs associated with DILI, which could help manage adverse drug reactions attributed to Kampo medicines and crude drugs.

2.
Gene ; 813: 146108, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34929341

ABSTRACT

20(S)-Protopanaxadiol (PPD) and 20(S)-Protopanaxatriol (PPT) are major metabolites of ginseng in humans and are considered to have estrogenic activity in cellular bioassays. In this study, we conducted in silico analyses to determine whether PPD and PPT interact with estrogen receptor alpha (ERα) and compared them with ERα agonists, partial agonists, and antagonists to identify their ERα activity. The transcriptome profile of 17ß-estradiol (E2), PPD, and PPT in MCF-7 cells expressing ERα was further compared to understand the ERα activity of ginsenoside metabolites. The results showed that PPD and PPT interacted with the 1ERE, 1GWR, and 3UUD ERα proteins in the E2 interaction model, the 3ERD protein in the diethylstilbestrol (DES) interaction model, and the 1X7R protein in the genistein (GEN) interaction model. Conversely, neither the 4PP6 protein of the interaction model with the antagonist resveratrol (RES) nor the 1ERR protein of the interaction model with the antagonist raloxifene (RAL) showed the conformation of amino acid residues. When E2, PPD, and PPT were exposed to MCF-7 cells, cell proliferation and gene expression were observed. The transcriptomic profiles of E2, PPD, and PPT were compared using a knowledge-based pathway. PPD-induced transcription profiling was similar to that of E2, and the neural transmission pathway was detected in both compounds. In contrast, PPT-induced transcription profiling displayed characteristics of gene expression associated with systemic lupus erythematosus. These results suggest that ginsenoside metabolites have ERα agonist activity and exhibit neuroprotective effects and anti-inflammatory actions. However, a meta-analysis using public microarray data showed that the mother compounds GRb1 and GRg1 of PPD and PPT showed metabolic functions in insulin signaling pathways, condensed DNA repair and cell cycle pathways, and immune response and synaptogenesis. These results suggest that the ginsenoside metabolites have potent ERα agonist activity; however, their gene expression profiles may differ from those of E2.


Subject(s)
Estrogen Receptor alpha/metabolism , Sapogenins/metabolism , Triterpenes/metabolism , Cell Proliferation/drug effects , Estradiol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Gene Expression , Genistein/pharmacology , Ginsenosides/genetics , Ginsenosides/metabolism , Humans , MCF-7 Cells , Molecular Docking Simulation/methods , Resveratrol/pharmacology , Sapogenins/pharmacology , Signal Transduction/drug effects , Transcriptome , Triterpenes/pharmacology
3.
Int J Mol Sci ; 21(15)2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32756504

ABSTRACT

Stress in early life has been linked with the development of late-life neurological disorders. Early developmental age is potentially sensitive to several environmental chemicals such as alcohol, drugs, food contaminants, or air pollutants. The recent advances using three-dimensional neural sphere cultures derived from pluripotent stem cells have provided insights into the etiology of neurological diseases and new therapeutic strategies for assessing chemical safety. In this study, we investigated the neurodevelopmental effects of exposure to thalidomide (TMD); 2,2',4,4'-tetrabromodiphenyl ether; bisphenol A; and 4-hydroxy-2,2',3,4',5,5',6-heptachlorobiphenyl using a human embryonic stem cell (hESC)-derived sphere model. We exposed each chemical to the spheres and conducted a combinational analysis of global gene expression profiling using microarray at the early stage and morphological examination of neural differentiation at the later stage to understand the molecular events underlying the development of hESC-derived spheres. Among the four chemicals, TMD exposure especially influenced the differentiation of spheres into neuronal cells. Transcriptomic analysis and functional annotation identified specific genes that are TMD-induced and associated with ERK and synaptic signaling pathways. Computational network analysis predicted that TMD induced the expression of DNA-binding protein inhibitor ID2, which plays an important role in neuronal development. These findings provide direct evidence that early transcriptomic changes during differentiation of hESCs upon exposure to TMD influence neuronal development in the later stages.


Subject(s)
Human Embryonic Stem Cells/drug effects , Neurodevelopmental Disorders/genetics , Spheroids, Cellular/drug effects , Transcriptome/genetics , Cell Differentiation/drug effects , Cell Line , Gene Expression Regulation, Developmental/drug effects , Human Embryonic Stem Cells/pathology , Humans , MAP Kinase Signaling System/drug effects , Neurodevelopmental Disorders/chemically induced , Neurodevelopmental Disorders/pathology , Neurogenesis/drug effects , Neurogenesis/genetics , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Spheroids, Cellular/pathology , Synaptic Transmission/drug effects , Thalidomide/toxicity , Transcriptome/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...