Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Heliyon ; 8(11): e11197, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36353170

ABSTRACT

Irregular labelling on graph is a function from component of graph to non-negative natural number such that the weight of all vertices, or edges are distinct. The component of graph is a set of vertices, a set of edges, or a set of both. In this paper we study two types of irregular labelling on dodecahedral modified generalization graph. We determined the total vertex irregularity strength and the modular irregularity strength of dodecahedral modified generalized graph. These results are important because there many classes of graph have the same structure with modified dodecahedral graphs. These results can be used to determine the total vertex irregularity strength and the modular irregularity strength of other graphs that have the similar structure with modified dodecahedral graph.

2.
Heliyon ; 8(3): e09121, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35846445

ABSTRACT

Ionic liquid cations (ILCs) have been utilized in hybrid organic-inorganic perovskites (HOIPs) to enhance their photoluminescence performance. However, the high number of possible cations and anions needed to form ILCs makes the experimental measurement time and cost consuming. Computational methods that could assist the selection of ILCs for this task-specific application are highly desirable. Therefore, in this work, the photophysical properties of various ILCs, including linear aliphatic, five-membered, and six-membered cyclic aliphatic, and aromatic ILCs, were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Fluorescence and phosphorescence were analyzed using excited state dynamics (ESD) modules on ORCA at the B3LYP/def2TZVP level theory. All the investigated cations show fluorescence spectra either the UV or visible range. The cations with long-chain branches show fluorescence spectra in the visible range. Five membered rings show the phosphorescence spectra in the visible range, while the six-membered rings show the phosphorescence spectra in the near-infrared range.

3.
J Chromatogr A ; 1666: 462859, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35124362

ABSTRACT

Countercurrent and centrifugal partition chromatography are techniques applied in the separation and isolation of compounds from natural extracts. One of the key design parameters of these processes is the selection of the biphasic solvent system that provides for the adequate partitioning of the solutes. To address this challenging task, the fully predictive Conductor-like Screening Model for Real Solvents (COSMO-RS) and the semi-predictive Non-Random Two-Liquid Segment Activity Coefficient (NRTL-SAC) model were applied to estimate the partition coefficients (K) of four model phenolic compounds (vanillin, ferulic acid, (S)-hesperetin and quercetin) in different solvent systems. Complementing the experimental data collected in the literature, partition coefficients of each solute in binary, or quaternary, solvent systems were measured at 298.2 K. Higher deviations from the experimental data were obtained using the predictive COSMO-RS model, with an average RMSD (root-mean-square deviation) in log(K) of 1.17 of all four solutes (61 data points), providing a satisfactory quantitative description only for the systems containing vanillin (RSMD = 0.57). For the NRTL-SAC model, the molecular parameters of the solutes were initially calculated by correlating a set of K and solubility (x, in mole fraction) data (16 partition coefficients and 44 solubility data points), for which average RMSD values of 0.07 and 0.41 were obtained in log(K) and log(x), respectively. The predictions of the remaining log(K) data (45 partition coefficients) resulted in an average RMSD of 0.43, suggesting that the NRTL-SAC model was a more reliable quantitative solvent screening tool. Depending on the amount of available solubility and partition data, both models can be valuable alternatives in the preliminary stages of solvent screening destined to select the optimal mobile and stationary phases for a given separation.


Subject(s)
Countercurrent Distribution , Chromatography, Liquid/methods , Countercurrent Distribution/methods , Solubility , Solvents/chemistry
4.
Bioresour Technol ; 345: 126555, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34910971

ABSTRACT

There is a growing demand in the development of environmentally friendly technologies, based on the use of more biocompatible solvents for the recovery of natural bioactive compounds. In this work, the red yeast Phaffia rhodozyma biomass was used as a source of carotenoids to develop an integrative and efficient platform that promotes the recovery of astaxanthin and ß-carotene using bio-based solvents (BioSs). The extraction aptitude of pure BioSs was evaluated and compared with the conventional organic method. At this point, the influence of the BioSs molecular structures involved in the extraction procedures were also investigated. Overall, envisaging the industrial application of the process, an integrative platform was proposed for the recovery of astaxanthin/ß-carotene from P. rhodozyma biomass and the recycle of the BioSs. The life cycle assessment of the proposed technology using EtOH was evaluated, validating the sustainability of BioSs in the process with environmental impact reduction of 3-12%.


Subject(s)
Basidiomycota , beta Carotene , Biomass , Solvents , Xanthophylls
5.
Niger J Clin Pract ; 23(4): 577-580, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32246669

ABSTRACT

Amelogenesis imperfecta (AI) is an enamel defect and is often associated with the anterior open bite (AOB) and transverse maxillary deficiency. It is known that in such cases when AI and AOB appeared together, posterior maxillary impaction with or without bilateral mandibular ramus osteotomies is a frequently preferred treatment option. Virtual planning is more reliable rather than the conventional model surgery planning, especially for complicated cases. Usage area of virtual 3D anatomical models reconstructed from Cone Beam Computed Tomography (CBCT) data is expanding day by day for both diagnosis and surgical planning. The aim of this study is to present a patient with AI and AOB and transverse maxillary deficiency and management of this case with virtually planned two-segment Le fort I and sagittal split ramus osteotomies followed by prosthetic rehabilitation.


Subject(s)
Amelogenesis Imperfecta , Open Bite , Oral Surgical Procedures/methods , Adult , Amelogenesis Imperfecta/complications , Amelogenesis Imperfecta/diagnostic imaging , Cone-Beam Computed Tomography , Female , Humans , Imaging, Three-Dimensional , Mandible/diagnostic imaging , Mandible/surgery , Open Bite/complications , Open Bite/diagnostic imaging , Open Bite/surgery , Patient-Specific Modeling , Tooth/diagnostic imaging , Tooth/surgery , Young Adult
6.
Chem Commun (Camb) ; 53(53): 7298-7301, 2017 Jul 07.
Article in English | MEDLINE | ID: mdl-28447082

ABSTRACT

Herein we propose an alternative way to distinguish ionic liquids from Coulombic-dominated salts, based not on their upper limit melting temperature (100 °C), but on the trend of their phase-forming abilities to create aqueous biphasic systems as a function of temperature, in which a wider plethora of interactions can be appraised.

7.
J Phys Chem B ; 121(14): 3177-3189, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28332847

ABSTRACT

Protic ionic liquids (PILs) have emerged as promising compounds and attracted the interest of the industry and the academy community, due to their easy preparation and unique properties. In the context of green chemistry, the use of biocompounds, such as fatty acids, for their synthesis could disclose a possible alternative way to produce ILs with a low or nontoxic effect and, consequently, expanding their applicability in biobased processes or in the development of bioproducts. This work addressed efforts to a better comprehension of the complex solid-[liquid crystal]-liquid thermodynamic equilibrium of 20 new PILs synthesized by using fatty acids commonly found in vegetable oils, as well as their rheological profile and self-assembling ability. The work revealed that their phase equilibrium and physical properties are significantly impacted by the structure of the ions used for their synthesis. The use of unsaturated fatty acids and bis(2-hydroxyethyl)ammonium for the synthesis of these biobased ILs led to a drastic decreasing of their melting temperatures. Also, the longest alkyl chain fatty acids promoted higher self-assembling and more stable mesophases. Besides their sustainable appeal, the marked high viscosity, non-Newtonian profile, and very low critical micellar concentration values of the PIL crystals here disclosed make them interesting renewable compounds with potential applications as emulsifiers, stabilizers, thickeners, or biolubricants.

8.
Fluid Phase Equilib ; 407: 188-196, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-27642223

ABSTRACT

In order to evaluate the impact of the alkyl side chain length and symmetry of the cation on the thermophysical properties of water-saturated ionic liquids (ILs), densities and viscosities as a function of temperature were measured at atmospheric pressure and in the (298.15 to 363.15) K temperature range, for systems containing two series of bis(trifluoromethylsulfonyl)imide-based compounds: the symmetric [C n C n im][NTf2] (with n = 1-8 and 10) and asymmetric [C n C1im][NTf2] (with n = 2-5, 7, 9 and 11) ILs. For water-saturated ILs, the density decreases with the increase of the alkyl side chain length while the viscosity increases with the size of the aliphatic tails. The saturation water solubility in each IL was further estimated with a reasonable agreement based on the densities of water-saturated ILs, further confirming that for the ILs investigated the volumetric mixing properties of ILs and water follow a near ideal behaviour. The water-saturated symmetric ILs generally present lower densities and viscosities than their asymmetric counterparts. From the experimental data, the isobaric thermal expansion coefficient and energy barrier were also estimated. A close correlation between the difference in the energy barrier values between the water-saturated and pure ILs and the water content in each IL was found, supporting that the decrease in the viscosity of ILs in presence of water is directly related with the decrease of the energy barrier.

9.
Fluid Phase Equilib ; 409: 458-465, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-27642224

ABSTRACT

Ionic liquids (ILs) with cyano-functionalized anions are a set of fluids that are still poorly characterized despite their remarkably low viscosities and potential applications. Aiming at providing a comprehensive study on the influence of the number of -CN groups through the surface tension and surface organization of ILs, the surface tensions of imidazolium-based ILs with cyano-functionalized anions were determined at atmospheric pressure and in the (298.15 to 343.15) K temperature range. The ILs investigated are based on 1-alkyl-3-methylimidazolium cations (alkyl = ethyl, butyl and hexyl) combined with the [SCN]-, [N(CN)2]-, [C(CN)3]- and [B(CN)4]-anions. Although the well-known trend regarding the surface tension decrease with the increase of the size of the aliphatic moiety at the cation was observed, the order obtained for the anions is more intricate. For a common cation and at a given temperature, the surface tension decreases according to: [N(CN)2]- > [SCN]- > [C(CN)3]- > [B(CN)4]-. Therefore, the surface tension of this homologous series does not decrease with the increase of the number of -CN groups at the anion as has been previously shown by studies performed with a more limited matrix of ILs. A maximum in the surface tension and critical temperature was observed for [N(CN)2]-based ILs. Furthermore, a minimum in the surface entropy, indicative of a highly structured surface, was found for the same class of ILs. All these evidences seem to be a result of stronger hydrogen-bonding interactions occurring in [N(CN)2]-based ILs, when compared with the remaining CN-based counterparts, and as sustained by cation-anion interaction energies derived from the Conductor Like Screening Model for Real Solvents (COSMO-RS).

10.
Phys Chem Chem Phys ; 17(47): 31653-31661, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26554705

ABSTRACT

Many applications involving ionic liquids (ILs) require the knowledge of their interfacial behaviour, such as wettability and adhesion. In this context, herein, two approaches were combined aiming at understanding the impact of the IL chemical structures on their wettability on both polar and non-polar surfaces, namely: (i) the experimental determination of the contact angles of a broad range of ILs (covering a wide number of anions of variable polarity, cations, and cation alkyl side chain lengths) on polar and non-polar solid substrates (glass, Al-plate, and poly-(tetrafluoroethylene) (PTFE)); and (ii) the correlation of the experimental contact angles with the cation-anion pair interaction energies generated by the Conductor-like Screening Model for Real Solvents (COSMO-RS). The combined results reveal that the hydrogen-bond basicity of ILs, and thus the IL anion, plays a major role through their wettability on both polar and non-polar surfaces. The increase of the IL hydrogen-bond accepting ability leads to an improved wettability of more polar surfaces (lower contact angles) while the opposite trend is observed on non-polar surfaces. The cation nature and alkyl side chain lengths have however a smaller impact on the wetting ability of ILs. Linear correlations were found between the experimental contact angles and the cation-anion hydrogen-bonding and cation ring energies, estimated using COSMO-RS, suggesting that these features primarily control the wetting ability of ILs. Furthermore, two-descriptor correlations are proposed here to predict the contact angles of a wide variety of ILs on glass, Al-plate, and PTFE surfaces. A new extended list is provided for the contact angles of ILs on three surfaces, which can be used as a priori information to choose appropriate ILs before a given application.

11.
J Mol Liq ; 210(B): 264-271, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26435559

ABSTRACT

A comprehensive study on the phase behaviour of two sets of ionic liquids (ILs) and their interactions with water is here presented through combining experimental and theoretical approaches. The impact of the alkyl side chain length and the cation symmetry on the water solubility in the asymmetric [C N-1C1im][NTf2] and symmetric [C N-1C N-1im][NTf2] series of ILs (N up to 22), from 288.15 K to 318.15 K and at atmospheric pressure, was studied. The experimental data reveal that the solubility of water in ILs with an asymmetric cation is higher than in those with the symmetric isomer. Several trend shifts on the water solubility as a function of the alkyl side chain length were identified, namely at [C6C1im][NTf2] for asymmetric ILs and at [C4C4im][NTf2] and [C7C7im][NTf2] for the symmetric ILs. To complement the experimental data and to further investigate the molecular-level mechanisms behind the dissolution process, Density Functional Theory calculations, using the Conductor-like Screening Model for Real Solvents (COSMO-RS) and the Electrostatic potential-derived CHelpG, were performed. The COSMO-RS model is able to qualitatively predict water solubility as function of temperature and alkyl chain lengths of both symmetric and asymmetric cations. Furthermore, the model is also capable to predict the somewhat higher water solubility in the asymmetric cation, as well as the trend shift as function of alkyl chain lengths experimentally observed. Both COSMO-RS and the electrostatic potential-derived CHelpG show that the interactions of water and the IL cation take place on the IL polar region, namely on the aromatic head and adjacent methylene groups what explains the differences in water solubility observed for cations with different chain lengths. Furthermore, the CHelpG calculations for the isolated cations in the gas phase indicates that the trend shift of water solubility as function of alkyl chain lengths and the difference of water solubility in symmetric may also result from the partial positive charge distribution/contribution of the cation.

12.
Phys Chem Chem Phys ; 17(29): 18980-90, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26129926

ABSTRACT

One of the main drawbacks comprising an appropriate selection of ionic liquids (ILs) for a target application is related to the lack of an extended and well-established polarity scale for these neoteric fluids. Albeit considerable progress has been made on identifying chemical structures and factors that influence the polarity of ILs, there still exists a high inconsistency in the experimental values reported by different authors. Furthermore, due to the extremely large number of possible ILs that can be synthesized, the experimental characterization of their polarity is a major limitation when envisaging the choice of an IL with a desired polarity. Therefore, it is of crucial relevance to develop correlation schemes and a priori predictive methods able to forecast the polarity of new (or not yet synthesized) fluids. In this context, and aiming at broadening the experimental polarity scale available for ILs, the solvatochromic Kamlet-Taft parameters of a broad range of bis(trifluoromethylsulfonyl)imide-([NTf2](-))-based fluids were determined. The impact of the IL cation structure on the hydrogen-bond donating ability of the fluid was comprehensively addressed. Based on the large amount of novel experimental values obtained, we then evaluated COSMO-RS, COnductor-like Screening MOdel for Real Solvents, as an alternative tool to estimate the hydrogen-bond acidity of ILs. A three-parameter model based on the cation-anion interaction energies was found to adequately describe the experimental hydrogen-bond acidity or hydrogen-bond donating ability of ILs. The proposed three-parameter model is also shown to present a predictive capacity and to provide novel molecular-level insights into the chemical structure characteristics that influence the acidity of a given IL. It is shown that although the equimolar cation-anion hydrogen-bonding energies (EHB) play the major role, the electrostatic-misfit interactions (EMF) and van der Waals forces (EvdW) also contribute, admittedly in a lower extent, towards the hydrogen-bond acidity of ILs. The new extended scale provided for the hydrogen-bond acidity of ILs is of high value for the design of new ILs for task-specific applications.

13.
Chemphyschem ; 16(10): 2219-25, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-25943332

ABSTRACT

The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups.


Subject(s)
Ionic Liquids/chemistry , Polyethylene Glycols/chemistry , Hydrogen Bonding , Molecular Structure , Solubility , Water/chemistry
14.
Phys Chem Chem Phys ; 17(6): 4569-77, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25583632

ABSTRACT

Although previous studies attempted to characterize the liquid-liquid phase behaviour between water and ionic liquids (ILs), the impact of non-cyclic cations on the solubilities is poorly studied and yet to be understood. In this work, the mutual solubilities between water and ILs containing the anion bis(trifluoromethylsulfonyl)imide, [NTf2](-), combined with the cations diethylmethylsulfonium, [S221][NTf2], triethylsulfonium, [S222][NTf2], butyltrimethylammonium, [N4111][NTf2], tributylmethylammonium, [N4441][NTf2], methyltrioctylammonium, [N1888][NTf2], and methyltrioctylphosphonium, [P1888][NTf2], from (288.15 to 318.15) K and at 0.1 MPa, were experimentally measured and further compared with predictions from the COnductor-like Screening MOdel for Real Solvents (COSMO-RS). All the studied phase diagrams display an upper critical solution temperature (UCST). The binary system composed of [P1888][NTf2] exhibits the widest immiscibility gap, followed by [N18888][NTf2], [N4441][NTf2], [S222][NTf2], [N4111][NTf2], and [S221][NTf2]. The COSMO-RS is able to correctly predict the experimental UCST behaviour and the cation impact on the immiscibility regimes observed. Natural Population Analysis (NPA) calculations were additionally performed for the isolated cations in the gas phase indicating that the differences in the water-IL mutual miscibilities might not result only from the hydrophobicity of the cation (derived from the increase of the alkyl chains length) but also from the charge distribution of the central atom and attached methylene groups. This fact explains the enhanced solubility of ammonium-based ILs in water here identified.

15.
B-ENT ; 11(4): 297-301, 2015.
Article in English | MEDLINE | ID: mdl-26891543

ABSTRACT

UNLABELLED: PROBLEM/OBJECTIVES: Maxillary constriction and high palatal arch are associated with increased risk of chronic eustachian tube dysfunction and conductive hearing loss (CHL) due to chronic effusion. However, this relationship has not been clearly demonstrated. This study assessed CHL in school children with a narrowed maxilla and deep palatal vault. METHODOLOGY: Thirty-two children with maxillary constriction were randomly selected for the study group and 28 children with normal transverse maxillary development were selected for the control group. Pure-tone audiograms were obtained for all children, and hearing levels and air-bone gaps were measured. RESULTS: Air-bone gap measurements in the control group ranged from 5.50 to 14.50 decibels (dB), and in the study group they were between 5.00 and 24.00 dB. In the study group, 14 (43.8%) children had slight CHL, and the remaining 18 (56.2%) children had normal hearing levels. In the control group, all of the children had normal hearing levels. Hearing levels and air-bone gaps were greater in the study group than the control group. CONCLUSION: This study showed that children with a narrowed maxilla and deep palatal vault may have slight CHL. Therefore, the onset of CHL should be followed with hearing screening programs.


Subject(s)
Bone Conduction/physiology , Hearing Loss, Conductive/etiology , Maxilla/abnormalities , Adolescent , Audiometry, Pure-Tone , Auditory Threshold , Child , Constriction, Pathologic , Female , Hearing Loss, Conductive/diagnosis , Hearing Loss, Conductive/physiopathology , Humans , Male
16.
J Chem Eng Data ; 60(6): 1674-1682, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-28260810

ABSTRACT

Ionic-liquid-based aqueous biphasic systems (IL-based ABS) have been largely investigated as promising extraction and purification routes. In this context, the determination of their phase diagrams and the physical properties of the coexisting phases are of high relevance when envisaging their large-scale applications. Low viscosities improve the mass transfer and reduce energy consumptions, while the knowledge on their densities is important for the equipment design. In this work, novel phase diagrams for aqueous solutions of imidazolium-based ILs combined with acetate-based salts, namely KCH3CO2 or NaCH3CO2, are reported and discussed. The ability of the acetate-based salts to induce the phase separation not only depends on the ions hydration energy, but also on the concentration of "free" ions in solution. The tie-lines, tie-line lengths and critical points are also addressed. Experimental measurements of density and viscosity of the coexisting phases, for the different systems and at several compositions and temperatures, are additionally presented. The Othmer-Tobias and Bancroft equations are also applied to ascertain on the tie-lines coherence. It is here shown that low-viscous IL-based ABS, with a high difference in the densities of the coexisting phases, can be formed with organic and biodegradable salts thus offering enhanced features over conventional polymer-based systems.

17.
J Phys Chem B ; 119(4): 1567-78, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25531795

ABSTRACT

The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.

18.
Phys Chem Chem Phys ; 16(39): 21340-8, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25179181

ABSTRACT

In this work, we demonstrate that the presence of fluorinated alkyl chains in Ionic Liquids (ILs) is highly relevant in terms of their thermophysical properties and aqueous phase behaviour. We have measured and compared the density and viscosity of pure 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [C2C1im][FAP], with that of pure 1-ethyl-3-methylimidazolium hexafluorophosphate, [C2C1im][PF6], at atmospheric pressure and in the (288.15 to 363.15) K temperature range. The results show that the density of [C2C1im][PF6] is lower than that of [C2C1im][FAP], while the viscosity data reveal the opposite trend. The fluid phase behaviour of aqueous solutions of the two ILs was also evaluated under the same conditions and it was found that the mutual solubilities of [C2C1im][FAP] and water are substantially lower than those verified with [C2C1im][PF6]. The experimental data were lastly interpreted at a molecular level using Molecular Dynamics (MD) simulation results revealing that the interactions between the IL ions and the water molecules are mainly achieved via the six fluorine atoms of [PF6](-) and the three analogues in [FAP](-). The loss of three interaction centres when replacing [PF6](-) by [FAP](-), coupled with the bulkiness and relative inertness of the three perfluoroethyl groups, reduces its mutual solubility with water and also contributes to a lower viscosity displayed by the pure [FAP]-based IL as compared to that of the [PF6]-based compound.

19.
Phys Chem Chem Phys ; 16(37): 19952-63, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25119425

ABSTRACT

The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.


Subject(s)
Ionic Liquids/chemistry , Water/chemistry , Aliivibrio fischeri/drug effects , Cations/chemistry , Hydrophobic and Hydrophilic Interactions , Imidazoles/chemistry , Ionic Liquids/toxicity , Molecular Dynamics Simulation , Piperidines/chemistry , Pyridines/chemistry , Pyrrolidines/chemistry , Solubility , Temperature , Thermodynamics
20.
Phys Chem Chem Phys ; 16(12): 5723-31, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24522511

ABSTRACT

The relative ability of cholinium-([Ch](+))-based salts, including ionic liquids (ILs), to form biocompatible aqueous biphasic systems (ABS) with polyethylene glycols (PEGs) was deeply scrutinized in this work. Aqueous solutions of low molecular weight PEG polymers (400, 600, and 1000 g mol(-1)) and [Ch](+) salts of chloride, acetate, bicarbonate, glycolate, lactate, dihydrogenphosphate, dihydrogencitrate, and bitartrate can undergo liquid-liquid demixing at certain concentrations of the phase-forming components and at several temperatures. Cholinium butanoate and propanoate were also studied; however, these long alkyl side chain ILs are not able to promote an immiscibility region with PEG aqueous solutions. The ternary liquid-liquid phase diagrams, binary water activities, PEG-salt and salt-H2O solubility data, and binary and ternary excess enthalpies estimated by COSMO-RS (COnductor-like Screening MOdel for Realistic Solvation) were used to obtain new insights into the molecular-level mechanisms responsible for phase separation. Instead of the expected and commonly reported salting-out phenomenon induced by the [Ch](+) salts over the polymer, the formation of PEG-[Ch](+) salt ABS was revealed to be an end result of a more intricate molecular scenario. The multifaceted approach employed here reveals that the ability to promote an ABS is quite different for the higher melting salts vs. the lower melting or liquid ILs. In the latter systems, the ABS formation seems to be controlled by the interplay of the relative strengths of the ion-ion, ion-water, ion-PEG, and water-PEG interactions, with a significant contribution from specific hydrogen-bonding between the IL anion and the PEG hydroxyl groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...