Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 85, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35288593

ABSTRACT

Referencing scholarly documents as information sources on Wikipedia is important because it supports or improves the quality of Wikipedia content. Several studies have been conducted regarding scholarly references on Wikipedia; however, little is known of the editors and their edits contributing to add the scholarly references on Wikipedia. In this study, we develop a methodology to detect the oldest scholarly reference added to Wikipedia articles by which a certain paper is uniquely identifiable as the "first appearance of the scholarly reference." We identified the first appearances of 923,894 scholarly references (611,119 unique DOIs) in 180,795 unique pages on English Wikipedia as of March 1, 2017 and stored them in the dataset. Moreover, we assessed the precision of the dataset, which was highly precise regardless of the research field. Finally, we demonstrate the potential of our dataset. This dataset is unique and attracts those who are interested in how the scholarly references on Wikipedia grew and which editors added them.

2.
PLoS One ; 12(4): e0176360, 2017.
Article in English | MEDLINE | ID: mdl-28453564

ABSTRACT

Understanding the influence of environmental factors on population dynamics is fundamental to many areas in biology. Survival is a key factor of population biology, as it is thought to be the predominant driver of growth in long-lived passerines, which can be influenced by both biotic and abiotic environmental conditions. We used mark-recapture methods and generalized linear mixed models to test the influence of density and climatic variation, measured at a regional and local scale (Southern Oscillation Index [SOI] and rainfall, respectively), on seasonal variation in survival rates of an insular population of Silvereyes (Zosterops lateralis chlorocephalus), during a 15-year study period, off the east coast of Australia. We found overall high survival rates for adults and juveniles (81% and 59%, respectively). Local scale climate (i.e. rainfall) and density were the principal environmental factors influencing their survival, both with a negative relationship. A significant interactive effect of density and rainfall influenced survival as they both increased. However, survival remained low when density was at it highest, independent of the amount of rainfall. Nestling survival was negatively influenced by rainfall and density, positively by SOI, and chicks that hatched later in the breeding season had higher survival rates. The regional scale climate variable (i.e. SOI) did not explain survival rates as strongly as rainfall in any age class. Our results contribute to the understanding of insular avian population dynamics and the differential effects of environmental factors across age classes. Climatic predictions expect El Niño events to increase, meaning dryer conditions in eastern Australia, potentially increasing Silvereye survival across age classes. However, the long-term effect of lower rainfall on food availability is unknown; consequently, the outcome of lower rainfall on Silvereye survival rates is uncertain.


Subject(s)
Climate , Passeriformes , Animals , Passeriformes/growth & development , Population Density , Population Dynamics , Survival Analysis , Tropical Climate
3.
Ecology ; 92(4): 813-20, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21661544

ABSTRACT

Individual heterogeneity and correlations between life history traits play a fundamental role in life history evolution and population dynamics. Unobserved individual heterogeneity in survival can be a nuisance for estimation of age effects at the individual level by causing bias due to mortality selection. We jointly analyze survival and breeding output from successful breeding attempts in an island population of Silvereyes (Zosterops lateralis chlorocephalus) by fitting models that incorporate age effects and individual heterogeneity via random effects. The number of offspring produced increased with age of parents in their first years of life but then eventually declined with age. A similar pattern was found for the probability of successful breeding. Annual survival declined with age even when individual heterogeneity was not accounted for. The rate of senescence in survival, however, depends on the variance of individual heterogeneity and vice versa; hence, both cannot be simultaneously estimated with precision. Model selection supported individual heterogeneity in breeding performance, but we found no correlation between individual heterogeneity in survival and breeding performance. We argue that individual random effects, unless unambiguously identified, should be treated as statistical nuisance or taken as a starting point in a search for mechanisms rather than given direct biological interpretation.


Subject(s)
Aging/physiology , Birds/physiology , Animals , Female , Male , Models, Biological , Population Dynamics , Reproduction/physiology
4.
Evolution ; 62(9): 2393-410, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18540948

ABSTRACT

Pronounced phenotypic shifts in island populations are typically attributed to natural selection, but reconstructing heterogeneity in long-term selective regimes remains a challenge. We examined a scenario of divergence proposed for species colonizing a new environment, involving directional selection with a rapid shift to a new optimum and subsequent stabilization. We provide some of the first empirical evidence for this model of evolution using morphological data from three timescales in an island bird, Zosterops lateralis chlorocephalus. In less than four millennia since separation from its mainland counterpart, a substantial increase in body size has occurred and was probably achieved in fewer than 500 generations after colonization. Over four recent decades, morphological traits have fluctuated in size but showed no significant directional trends, suggesting maintenance of a relatively stable phenotype. Finally, estimates of contemporary selection gradients indicated generally weak directional selection. These results provide a rare description of heterogeneity in long-term natural regimes, and caution that observations of current selection may be of limited value in inferring mechanisms of past adaptation due to a lack of constancy even over short time-frames.


Subject(s)
Biological Evolution , Phenotype , Selection, Genetic , Songbirds/genetics , Animals , Geography , Models, Genetic , Queensland , Songbirds/anatomy & histology , Time Factors
5.
Evolution ; 57(9): 2147-56, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14575334

ABSTRACT

Passerine birds living on islands are usually larger than their mainland counterparts, in terms of both body size and bill size. One explanation for this island rule is that shifts in morphology are an adaptation to facilitate ecological niche expansion. In insular passerines, for instance, increased bill size may facilitate generalist foraging because it allows access to a broader range of feeding niches. Here we use morphologically and ecologically divergent races of white-eyes (Zosteropidae) to test three predictions of this explanation: (1) island populations show a wider feeding niche than mainland populations; (2) island-dwelling populations are made up of individual generalists; and (3) within insular populations there is a positive association between size and degree of foraging generalism. Our results provide only partial support for the traditional explanation. In agreement with the core prediction, island populations of white-eye do consistently display a wider feeding niche than comparative mainland populations. However, observations of individually marked birds reveal that island-dwelling individuals are actually more specialized than expected by chance. Additionally, neither large body size nor large bill size are associated with generalist foraging behavior per se. These latter results remained consistent whether we base our tests on natural foraging behavior or on observations at an experimental tree, and whether we use data from single or multiple cohorts. Taken together, our results suggest that generalist foraging and niche expansion are not the full explanation for morphological shifts in island-dwelling white-eyes. Hence, we review briefly five alternative explanations for morphological divergence in insular populations: environmental determination of morphology, reduced predation pressure, physiological optimization, limited dispersal, and intraspecific dominance.


Subject(s)
Environment , Feeding Behavior , Geography , Songbirds/anatomy & histology , Songbirds/physiology , Animals , Australia , Beak/anatomy & histology , Body Constitution , New Zealand
6.
Evolution ; 56(10): 2090-9, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12449495

ABSTRACT

Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis, to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.


Subject(s)
Biological Evolution , Songbirds/genetics , Songbirds/physiology , Animals , Australia , Evolution, Molecular , Genetic Drift , Microsatellite Repeats , Multivariate Analysis , New Zealand
7.
Proc Natl Acad Sci U S A ; 99(12): 8127-32, 2002 Jun 11.
Article in English | MEDLINE | ID: mdl-12034870

ABSTRACT

The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.


Subject(s)
Biological Evolution , Founder Effect , Genetic Variation , Songbirds/genetics , Animals , Heterozygote , Linkage Disequilibrium , Probability , Tasmania
SELECTION OF CITATIONS
SEARCH DETAIL
...