Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(15): 4212-4217, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38599584

ABSTRACT

The liquid crystal molecule 3-fluoro-4-(3,4,5-trifluorophenyl)phenyl 2,6-difluoro-4-(trans-5-n-propyl-1,3-dioxane-2-yl)benzoate (DIO) has attracted considerable interest owing to its unique ferroelectric nematic phase and extraordinarily high dielectric constant. To expand the DIO series, novel analogs with 1,3-dioxane units converted to ester units (EST analogs) were synthesized, and their physical properties were characterized. The EST analogs exhibited ferroelectric phases similar to those of the corresponding DIO analogs. Interestingly, an EST analogue featuring a defluorinated benzoate unit exhibited a ferroelectric smectic A phase, despite its smaller longitudinal dipole moment of 6.9 D. This result diverges from the common knowledge that the formation of large longitudinal dipoles is traditionally effective in the emergence of ferroelectric phases. Unlike the DIO series, the EST analogs can be readily obtained without the formation of undesired geometric isomers, which is advantageous for practical applications. The results of this study provide valuable insights into the design of liquid-crystalline materials expressing ferroelectric phases.

2.
Chemistry ; 30(13): e202303277, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38179786

ABSTRACT

With the aim of controlling the orientation of liquid crystals (LCs) toward realizing external stimuli-responsive materials with tunable functionalities, we synthesized a composite of LCs and metal-organic frameworks (MOFs) by filling LCs into the pores of MOFs (LC@MOFs) for the first time. The included LCs interact with the MOFs through coordination bonds between the cyano groups of the LCs and the metal ions of the MOFs, enabling the orientation of the LC molecules inside the pores of the MOFs and the realization of birefringence of LC@MOFs. The three-dimensional nanometer interstice frameworks maintained the LC orientation even at temperatures much higher than the isotropic phase transition temperature of bulk LCs. Furthermore, the orientational state changed upon heating or cooling, inducing temperature-dependent birefringence. This study provides a new approach to the development of stimuli-responsive optical materials and stimuli-responsive MOFs.

3.
Adv Sci (Weinh) ; 9(26): e2202048, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35869031

ABSTRACT

Ferroelectricity in fluid materials, which allows free rotation of molecules, is an unusual phenomenon raising cutting-edge questions in science. Conventional ferroelectric liquid crystals have been found in phases with low symmetry that permit the presence of spontaneous polarization. Recently, the discovery of ferroelectricity with high symmetry in the nematic phase has attracted considerable attention. However, the physical mechanism and molecular origin of ferroelectricity are poorly understood and a large domain of macroscopically oriented spontaneous polarization is difficult to fabricate in the ferroelectric nematic phase. This study reports new fluid layered ferroelectrics with the C∞v symmetry in which nearly complete orientation of the spontaneous polarization remains stable under zero electric field without any orientation treatment. These ferroelectrics are obtained by simplifying the molecular structure of a compound with a known ferroelectric nematic phase, although the simplification reduced the dipole moment. The results provide useful insights into the mechanism of ferroelectricity due to dipole-dipole interactions in molecular assemblies. The new ferroelectric materials are promising for a wide range of applications as soft ferroelectrics.

4.
Polymers (Basel) ; 12(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32707769

ABSTRACT

The widespread electro-optical applications of polymer dispersed liquid crystals (PDLCs) are hampered by their high-driving voltage. Attempts to fabricate PDLC devices with low driving voltage sacrifice other desirable features of PDLCs. There is thus a clear need to develop a method to reduce the driving voltage without diminishing other revolutionary features of PDLCs. Herein, we report a low-voltage driven PDLC system achieved through an elegantly simple and uniquely designed acrylate monomer (A3DA) featuring a benzene moiety with a dodecyl terminal chain. The PDLC films were fabricated by the photopolymerization of mono- and di-functional acrylate monomers (19.2 wt%) mixed in a nematic liquid crystal E7 (80 wt%). The PDLC film with A3DA exhibited an abrupt decline of driving voltage by 75% (0.55 V/µm) with a high contrast ratio (16.82) while maintaining other electro-optical properties almost the same as the reference cell. The response time was adjusted to satisfactory by tuning the monomer concentration while maintaining the voltage significantly low (3 ms for a voltage of 0.98 V/µm). Confocal laser scanning microscopy confirmed the polyhedral foam texture morphology with an average mesh size of approximately 2.6 µm, which is less in comparison with the mesh size of reference PDLC (3.4 µm), yet the A3DA-PDLC showed low switching voltage. Thus, the promoted electro-optical properties are believed to be originated from the unique polymer networks formed by A3DA and its weak anchoring behavior on LCs. The present system with such a huge reduction in driving voltage and enhanced electro-optical performance opens up an excellent way for abundant perspective applications of PDLCs.

5.
RSC Adv ; 8(2): 971-979, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-35538948

ABSTRACT

A new series of chiral dopants, (R)-6,6'-halogenated (1b-1e, X = F, Cl, Br and I) and -methylated (1f) binaphthyl compounds, were designed and synthesized to create chiral liquid crystals by doping them into an achiral nematic liquid crystal (NLC). The influence of halogen (X = F, Cl, Br and I) and methyl substituent factors, such as steric, polar, and polarizability properties, on the helical twisting power (HTP) and their temperature dependences on the chiral dopants were investigated in two host NLCs with different characteristics, fluorinated JC-1041XX and N-(4-methoxybenzylidene)-4-butylaniline (MBBA). The chiral dopants possessing less steric and larger polarizability factors increased the HTP values. The structural similarity and electrostatic arene-arene interactions between the chiral dopants and the NLC molecules also exerted important influences on these values. The temperature dependence of the HTP (HTPt.d.) values also correlated well with the steric and polarizability substituents factors in the two host NLCs. Their correlation coefficients (R 2) depended on the molecular structural similarity between the chiral dopant and the NLC.

6.
ChemistryOpen ; 6(6): 684, 2017 12.
Article in English | MEDLINE | ID: mdl-29226054

ABSTRACT

Invited for this month's cover picture is the groups of Professor Hirotsugu Kikuchi and Dr. Yasushi Okumura at the Institute for Materials Chemistry and Engineering at Kyushu University (Japan). External dynamic control of molecular self-organized superstructures with unique features has been researched, as these structures are applicable to chiral molecular devices. The cover picture shows photocontrol of selective reflection color that originated from the self-organized helical structure of chiral nematic liquid crystals (N*LCs) using closed-/open-type dopants. The drastic structure changes of the dopants by light stimuli enable reversible broad-spectrum control of selective reflections of N*LCs with opposite helical sign. Read the full text of the Full Paper at 10.1002/open.201700121.

7.
ChemistryOpen ; 6(6): 710-720, 2017 12.
Article in English | MEDLINE | ID: mdl-29226059

ABSTRACT

We demonstrate reversible RGB-color photocontrol of a chiral nematic liquid crystal (N*LC) by using newly synthesized closed- and open-type chiral dopants. The photoswitching elements in the dopants are azobenzene units on axially chiral binaphthyl cores. Owing to cis-trans photoisomerization of the azobenzene units, both closed- and open-type compounds showed higher solubility, larger helical twisting power (HTP), and larger changes in HTP than conventional chiral dopants in host LCs. Thus, even at very low dopant concentrations, we successfully controlled the chirality of the induced helical structure of the N*LCs. Consequently, the N*LCs reflected right- and left-handed circularly polarized light (CPL) under a light stimulus. In the N*LCs with closed-type chiral dopants, the RGB-color reflection was reversibly controlled within several seconds. Interestingly, the open-type chiral dopant reversibly inverted CPL with opposite handedness in the near and short-wave IR regions. These novel materials are expected to realize new applications and perspectives in color information and similar technologies.

8.
Adv Mater ; 29(43)2017 Nov.
Article in English | MEDLINE | ID: mdl-29023971

ABSTRACT

An anomalously large dielectric permittivity of ≈104 is found in the mesophase temperature range (MP phase) wherein high fluidity is observed for a liquid-crystal compound having a 1,3-dioxane unit in the mesogenic core (DIO). In this temperature range, no sharp X-ray diffraction peak is observed at both small and wide Bragg angles, similar to that for a nematic phase; however, an inhomogeneous sandy texture or broken Schlieren one is observed via polarizing optical microscopy, unlike that for a conventional nematic phase. DIO exhibits polarization switching with a large polarization value, i.e., P = 4.4 µC cm-2 , and a parallelogram-shaped polarization-electric field hysteresis loop in the MP phase. The inhomogeneously aligned DIO in the absence of an electric field adopts a uniform orientation along an applied electric field when field-induced polarization switching occurs. Furthermore, sufficiently larger second-harmonic generation is observed for DIO in the MP phase. Second-harmonic-generation interferometry clearly shows that the sense of polarization is inverted when the +/- sign of the applied electric field in MP is reversed. These results suggest that a unidirectional, ferroelectric-like parallel polar arrangement of the molecules is generated along the director in the MP phase.

9.
Phys Rev E ; 94(4-1): 042703, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841625

ABSTRACT

The Bragg reflection band width and optical rotatory dispersion of liquid crystalline cholesteric blue phases (BPs) I and II are compared by numerical simulations. Attention is paid to the wavelength regions for which the reflection bands with lowest photon energies appear, i.e., the [110] direction for BP I and the [100] direction for BP II. Finite difference time domain and 4×4 matrix calculations performed on the theoretical director tensor distribution of BPs with the same material parameters show that BP II, which has simple cubic symmetry, has a wider photonic band gap than BP I, which has body centered cubic symmetry, possibly due to the fact that the density of the double-twist cylinders in BP II are twice that in BP I. The theoretical results on the Bragg reflection band width are supported by reflectance measurements performed on BPs I and II for light incident along the [110] and [100] directions, respectively.

10.
Phys Chem Chem Phys ; 18(32): 22399-406, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27464002

ABSTRACT

Graphene oxide (GO) is a class of two-dimensional materials with a thickness of about 1 nm and a broad distribution of lateral dimension commonly approaching several micrometers. A dispersion of GOs in water often forms a liquid crystal, which is expected to be a promising precursor for the fabrication of carbon-based materials with well-ordered structures. To accelerate the application of GO-based liquid crystals, their structures and physical properties at various sizes must be well understood. To that end, we examined the local rheological properties of GO-based liquid crystals in the nematic phase using a particle tracking technique, where local properties can be accessed by observing the thermal motion of embedded probe particles. Particle diffusion was spatially heterogeneous, and depended on the size of the particles. Such a size-dependent heterogeneity can be associated with a hierarchical local environment, which is time-dependent for this system. The anisotropic particle diffusion originated from particles trapped in between the GO layers and in isotropic-like regions. The aggregation states of the GO dispersion composed of nematic and isotropic-like regions were observed using confocal laser scanning microscopy.

11.
Article in English | MEDLINE | ID: mdl-25768521

ABSTRACT

Liquid crystalline polymer stabilized blue phases (PSBPs) are candidate materials for next generation electro-optic switching devices because they form a self-organized three-dimensional periodic structure and exhibit a fast response time of submillisecond order. Considering the crystallographic structures of PSBPs, it is intuitive to believe that the electro-optic effect would depend on the direction of the applied electric field; however, this relationship has not yet been investigated. In this study, we prepared two kinds of samples in which the (110) and (200) planes were oriented parallel to the substrates, and investigated the electro-optic Kerr effect as a field was applied between the two substrates. The two samples exhibited differing behaviors, with the Kerr coefficient of the (110)-oriented sample being larger by 20% than that of the (200)-oriented sample. These results imply that the electro-optic Kerr effect of PSBPs is not isotropic but anisotropic, just like cubic optical crystals.

12.
Article in English | MEDLINE | ID: mdl-25228493

ABSTRACT

Poly-(N-isopropylacrylamide) (PNIPA) hydrogel films doped with uniaxially aligned liquid crystalline (LC) nanosheets adsorbed with a dye are synthesized and its anomalous photothermal deformation is demonstrated. The alignment of the nanosheet LC at the cm-scale is easily achieved by the application of an in-plane or out-of-plane AC electric field during photo-polymerization. A photoresponsive pattern is printable onto the gel with µm-scale resolution by adsorption of the dye through a pattern-holed silicone rubber. When the gel is irradiated with light, only the colored part is photothermally deformed. Interestingly, the photo-irradiated gel shows temporal expansion along one direction followed by anisotropic shrinkage, which is an anomalous behavior for a conventional PNIPA gel.

13.
Chemphyschem ; 15(7): 1447-51, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24711364

ABSTRACT

The temperature dependences of the Kerr coefficient and the response time in the electrooptical effect of polymer-stabilised blue phases (PSBPs) of liquid crystals (LCs) with various polymer concentrations are investigated in a wide temperature range including temperatures lower than room temperature. The Kerr coefficients are found to abruptly decrease at low temperature, and the response time-temperature relation obeys the Arrhenius equation. For comparison of the Kerr effect and molecular rotation at low temperature, various physical properties such as permittivity, rotational relaxation time and dielectric relaxation strength of the PSBPs are investigated. The electrooptical response times and the dielectric relaxation times show different temperature dependences, and rotation of LC molecules in PSBPs was sufficiently active at low temperature and not strongly affected by the polymer.

14.
Article in English | MEDLINE | ID: mdl-24580245

ABSTRACT

We investigate the effect of anisotropic lattice deformation on the Kerr coefficient of polymer-stabilized blue-phase liquid crystals (PSBP-LCs). PSBPs with orthorhombic and tetragonal symmetry were prepared by polymer-stabilizing a blue-phase liquid crystal under electrostriction. Both orthorhombic and tetragonal PSBPs showed smaller Kerr coefficients than the cubic PSBP, despite an increase in the unit cell volume caused by the elongation of the lattice along the direction of light propagation. Our results indicate that the Kerr coefficient of PSBPs is not determined simply by the volume of the unit lattice but by the lattice size perpendicular to the direction of light propagation.


Subject(s)
Color , Liquid Crystals/chemistry , Models, Chemical , Models, Molecular , Polymers/chemistry , Refractometry/methods , Anisotropy , Computer Simulation , Light , Scattering, Radiation
15.
Chem Asian J ; 8(12): 3002-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24006084

ABSTRACT

Thin-film growth of aragonite CaCO3 on annealed poly(vinyl alcohol) (PVA) matrices is induced by adding Mg(2+) into a supersaturated solution of CaCO3. Both the growth rate and surface morphology of the aragonite thin films depend upon the concentration of Mg(2+) in the mineralization solution. In the absence of PVA matrices, no thin films are formed, despite the presence of Mg(2+). Molecular dynamics simulation of the CaCO3 precursor suggests that the transition of amorphous calcium carbonate to crystals is suppressed in the presence of Mg(2+). The role for ionic additives in the crystallization of CaCO3 on organic templates obtained in this study may provide useful information for the development of functional hybrid materials.


Subject(s)
Calcium Carbonate/chemistry , Calcium Carbonate/chemical synthesis , Magnesium/chemistry , Polyvinyl Alcohol/chemistry , Crystallization , Ions/chemistry , Particle Size , Surface Properties
16.
Chemphyschem ; 14(12): 2704-10, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23818137

ABSTRACT

The electrorheological (ER) effect and the electro-optical properties of a ''side-on'' liquid crystalline polysiloxane (PS) are investigated. A large ER effect is observed and the response to the shear stress of neat PS in the nematic phase is shown to be affected by the shear rate. PS is also mixed with a low-molar nematic liquid crystal (5CB) in order to improve the response behavior to the applied electric field. The rheological properties of such mixtures are highly dependent on the concentration of 5CB. The composites respond faster to the applied electric field and have improved electro-optical properties. This study offers a new perspective on the development of liquid crystal materials for the ER effect.

17.
Opt Lett ; 36(18): 3578-80, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21931396

ABSTRACT

Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.

18.
Chem Commun (Camb) ; 46(8): 1229-31, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-20449259

ABSTRACT

A lipophilic linear Fe(II) complex is dispersed as nanofibers in nematic liquid crystals and displays spin-crossover at temperatures higher than those observed for the bulk crystalline state; thermal bistability is also induced in the liquid crystal environment, reflecting increased ligand field splitting energy and enhanced cooperativity by liquid crystals.

19.
J Am Chem Soc ; 130(20): 6326-7, 2008 May 21.
Article in English | MEDLINE | ID: mdl-18439009

ABSTRACT

The three-dimensional structure of polymer-stabilized blue phase with the order of optical wavelength was nondestructively investigated by a confocal laser scanning microscope. The periodical patterns corresponding to the bcc lattice were observed not only on the surface but also in the internal region. The visualization mechanism was expected to be back scattering caused by liquid crystal order.

20.
Nat Mater ; 1(1): 64-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12618852

ABSTRACT

Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...