Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Cureus ; 16(4): e58376, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38756273

ABSTRACT

Blood blister-like aneurysms (BBAs) are rare and challenging intracranial aneurysms. They pose significant diagnostic and surgical risks due to their delicate walls. Accounting for a small percentage of intracranial aneurysms, BBAs are pathologically pseudoaneurysms, often resulting from arterial dissection, with a high tendency to rupture. This report underscores the critical nature of BBAs by reviewing a case in which subarachnoid hemorrhage caused by a BBA rupture was difficult to diagnose with conventional imaging. We highlight the efficacy of three-dimensional (3D) high-resolution vessel wall imaging (VWI) in discerning the subtle vascular abnormality of BBAs. The integration of the black-blood imaging technique within VWI provides superior contrast between the aneurysm and surrounding tissues, facilitating clearer visualization of the aneurysmal wall. The use of 3D T1-weighted imaging provides intricate details of the vessel wall including its contrast enhancement, which is crucial for a comprehensive assessment of a ruptured aneurysm. This case is consistent with the existing literature, supporting the role of VWI in the identification of ruptured BBAs, an area with limited but growing information on its diagnostic value. VWI is precise and accurate in the preoperative diagnosis of BBAs, emphasizing its potential to improve patient management and outcomes, especially in conditions with high risks of morbidity and mortality.

2.
Sci Rep ; 14(1): 5468, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443400

ABSTRACT

Moyamoya disease (MMD) is characterized by progressive arterial occlusion, causing chronic hemodynamic impairment, which can reduce brain volume. A novel quantitative technique, synthetic magnetic resonance imaging (SyMRI), can evaluate brain volume. This study aimed to investigate whether brain volume measured with SyMRI correlated with cerebral blood flow (CBF) and brain function in adult MMD. In this retrospective study, 18 adult patients with MMD were included. CBF was measured using iodine-123-N-isopropyl-p-iodoamphetamine single photon emission computed tomography. Cerebrovascular reactivity (CVR) to acetazolamide challenge was also evaluated. Brain function was measured using the Wechsler Adult Intelligence Scales (WAIS)-III/IV and the WAIS-R tests. Gray matter (GM), white matter, and myelin-correlated volumes were evaluated in six areas. Resting CBF was positively correlated with GM fractions in the right anterior cerebral arterial and right middle cerebral arterial (MCA) territories. CVR was positively correlated with GM fraction in the right posterior cerebral arterial (PCA) territory. Full-Scale Intelligence Quotient and Verbal Comprehension Index scores were marginally positively correlated with GM fractions in the left PCA territory. Processing Speed Index score was marginally positively correlated with GM fraction in the right MCA territory. The SyMRI-measured territorial GM fraction correlated with CBF and brain function in patients with MMD.


Subject(s)
Moyamoya Disease , Adult , Humans , Moyamoya Disease/diagnostic imaging , Retrospective Studies , Cerebrovascular Circulation , Magnetic Resonance Imaging , Cerebral Cortex
3.
Neuroradiology ; 66(3): 333-341, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224343

ABSTRACT

PURPOSE: This study aimed to compare assessments by radiologists, artificial intelligence (AI), and quantitative measurement using synthetic MRI (SyMRI) for differential diagnosis between astrocytoma, IDH-mutant and oligodendroglioma, and IDH-mutant and 1p/19q-codeleted and to identify the superior method. METHODS: Thirty-three cases (men, 14; women, 19) comprising 19 astrocytomas and 14 oligodendrogliomas were evaluated. Four radiologists independently evaluated the presence of the T2-FLAIR mismatch sign. A 3D convolutional neural network (CNN) model was trained using 50 patients outside the test group (28 astrocytomas and 22 oligodendrogliomas) and transferred to evaluate the T2-FLAIR mismatch lesions in the test group. If the CNN labeled more than 50% of the T2-prolonged lesion area, the result was considered positive. The T1/T2-relaxation times and proton density (PD) derived from SyMRI were measured in both gliomas. Each quantitative parameter (T1, T2, and PD) was compared between gliomas using the Mann-Whitney U-test. Receiver-operating characteristic analysis was used to evaluate the diagnostic performance. RESULTS: The mean sensitivity, specificity, and area under the curve (AUC) of radiologists vs. AI were 76.3% vs. 94.7%; 100% vs. 92.9%; and 0.880 vs. 0.938, respectively. The two types of diffuse gliomas could be differentiated using a cutoff value of 2290/128 ms for a combined 90th percentile of T1 and 10th percentile of T2 relaxation times with 94.4/100% sensitivity/specificity with an AUC of 0.981. CONCLUSION: Compared to the radiologists' assessment using the T2-FLAIR mismatch sign, the AI and the SyMRI assessments increased both sensitivity and objectivity, resulting in improved diagnostic performance in differentiating gliomas.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Oligodendroglioma , Male , Humans , Female , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Artificial Intelligence , Diagnosis, Differential , Retrospective Studies , Mutation , Glioma/diagnostic imaging , Glioma/genetics , Glioma/pathology , Magnetic Resonance Imaging/methods , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Isocitrate Dehydrogenase/genetics
4.
Neuroradiology ; 66(2): 187-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127124

ABSTRACT

PURPOSE: The cortical high-flow sign with the non-enhancing area was reportedly found to be more frequent with oligodendroglioma, IDH-mutant and 1p/19q codeleted (ODG IDHm-codel) than with IDH-wildtype or astrocytoma, IDH-mutant on arterial spin labeling (ASL) in diffuse gliomas. This study aimed to compare the identification rate of the cortical high-flow sign on ASL in patients with ODG IDHm-codel to that on dynamic susceptibility contrast-enhanced perfusion-weighted imaging (DSC-PWI). METHODS: Participants consisted of 32 adult ODG IDHm-codel patients with pathologically confirmed. Subtraction images were generated from paired control and label images on ASL. For DSC, dynamic T2*-weighted perfusion weighted images were obtained after pre-bolus of gadolinium-based contrast agent. Regional cerebral blood flow/volume maps were generated based on the concentration-time curve and arterial input function. Tumor-affecting cortices without contrast enhancement on conventional MR imaging were targeted. The identification rate of the cortical high-flow sign was compared between ASL and DSC using the Pearson's Chi-Square test. RESULTS: Frequency of the cortical high-flow sign was significantly higher on ASL (18/32, 56.3%; p < 0.001) than on DSC (5/32, 15.6%). All cases with the positive cortical high-flow sign on DSC were identified on ASL. CONCLUSION: ASL effectively identifies the cortical high-flow sign in ODG IDHm-codel, surpassing DSC in identification rates.


Subject(s)
Brain Neoplasms , Glioma , Oligodendroglioma , Adult , Humans , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Spin Labels , Magnetic Resonance Imaging/methods , Mutation , Isocitrate Dehydrogenase/genetics
5.
Neuroradiol J ; : 19714009231224419, 2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38146229

ABSTRACT

Hypomyelination of early myelinating structures (HEMS) has recently been defined as a new genetic disorder accompanied by clinical and MR imaging characteristics. However, no studies have focused on diffusion-weighted imaging (DWI) findings of HEMS. We would like to propose a "sheep sign," which is formed by DWI hyperintensity in the medial medullary lamina along with alternating high-low-high (HLH) intensity stripes in the posterior limb of the internal capsule. We believe the presence of the "sheep sign" on DWI in combination with alternating HLH intensity stripes may be a valuable tool for diagnosing HEMS.

6.
J Magn Reson Imaging ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37937684

ABSTRACT

Arterial spin labeling (ASL) is a noninvasive imaging technique that labels the proton spins in arterial blood and uses them as endogenous tracers. Brain perfusion imaging with ASL is becoming increasingly common in clinical practice, and clinical applications of ASL for intracranial magnetic resonance angiography (MRA) have also been demonstrated. Unlike computed tomography (CT) angiography and cerebral angiography, ASL-based MRA does not require contrast agents. ASL-based MRA overcomes most of the disadvantages of time-of-flight (TOF) MRA. Several schemes have been developed for ASL-based MRA; the most common method has been pulsed ASL, but more recently pseudo-continuous ASL, which provides a higher signal-to-noise ratio (SNR), has been used more frequently. New methods that have been developed include direct intracranial labeling methods such as velocity-selective ASL and acceleration-selective ASL. MRA using an extremely short echo time (eg, silent MRA) or ultrashort echo-time (TE) MRA can suppress metal susceptibility artifacts and is ideal for patients with a metallic device implanted in a cerebral vessel. Vessel-selective 4D ASL MRA can provide digital subtraction angiography (DSA)-like images. This review highlights the principles, clinical applications, and characteristics of various ASL-based MRA techniques. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.

7.
J Physiol Anthropol ; 42(1): 18, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37674183

ABSTRACT

BACKGROUND: Alexithymia, a personality trait characterized by difficulties in identifying and expressing their emotions despite having a range of emotional experiences, can impact individuals' stress coping mechanisms. While many studies have investigated brain functions associated with specific tasks in relation to emotion processing, research focusing on resting-state brain functions has been limited. Thus, the aim of this study was to investigate the relationship between alexithymia and brain function by analyzing arterial spin labeling (ASL) data obtained during the resting state. METHODS: A brain structural and functional imaging study was conducted on 42 healthy adult men and women using ASL and the 20-item Toronto Alexithymia Scale (TAS-20) questionnaire survey. Cerebral blood flow and functional connectivity values were calculated for regions of interest in the default mode network, saliency network, and central executive network from the ASL data. Correlation analysis was performed with TAS20 scores, and partial correlation analysis was conducted to control for anxiety and depression. RESULTS: The functional connectivity analysis revealed a negative correlation between the functional connectivity of the right insular cortex and left anterior cingulate cortex and the total score of TAS, as well as difficulty identifying feelings and difficulty describing feeling subscores, indicating that the higher the scores, the weaker the functional connectivity between these regions (T = -3.830, p = 0.0013, R = -0.5180). This correlation remained significant even after controlling for anxiety and depression using partial correlation analysis. CONCLUSION: The present study revealed differences in the activity of the Saliency Network at rest as measured by ASL, which were independent of anxiety and depression, and varied depending on the severity of alexithymia. This functional change may underlie the neural basis of decreased emotional processing observed in alexithymia. These findings may contribute to the elucidation of the neural mechanisms of alexithymia, which can lead to social impairments, and suggest the usefulness of ASL measurement as a biomarker of alexithymia.


Subject(s)
Affective Symptoms , Emotions , Adult , Male , Humans , Female , Healthy Volunteers , Anxiety , Brain/diagnostic imaging
9.
Eur J Radiol Open ; 11: 100516, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37609044

ABSTRACT

Purpose: To assess the reproducibility of ADC, T1, T2, and proton density (PD) measurements on the cortex across the entire brain using high-resolution pseudo-3D diffusion-weighted imaging using echo-planar imaging with compressed SENSE (EPICS-DWI) and 3D quantification with an interleaved Look-Locker acquisition sequence with T2 preparation pulse (3D-QALAS) in normal healthy adults. Methods: Twelve healthy participants (median age, 33 years; range, 28-51 years) were recruited to evaluate the reproducibility of whole-brain EPICS-DWI and synthetic MRI. EPICS-DWI utilizes a compressed SENSE reconstruction framework while maintaining the EPI sampling pattern. The 3D-QALAS sequence is based on multi-acquisition 3D gradient echo, with five acquisitions equally spaced in time, interleaved with a T2 preparation pulse and an inversion pulse. EPICS-DWI (b values, 0 and 1000 s/mm2) and 3D-QALAS sequence with identical voxel size on a 3.0-T MR system were performed twice (for test-retest scan). Intraclass correlation coefficients (ICCs) for ADC, T1, T2, and PD for all parcellated volume of interest (VOI) per subject on scan-rescan tests were calculated to assess reproducibility. Bland-Altman plots were used to investigate discrepancies in ADCs, T1s, T2s, and PDs obtained from the two MR scans. Results: The ICC of ADCs was 0.785, indicating "good" reproducibility. The ICCs of T1s, T2s, and PDs were 0.986, 0.978, and 0.968, indicating "excellent" reproducibility. Conclusion: The combination of EPICS-DWI and 3D-QALAS sequences with identical voxel size could reproducible ADC, T1, T2, and PD measurements for the cortex across the entire brain in healthy adults.

10.
Neurol Med Chir (Tokyo) ; 63(8): 364-374, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37423755

ABSTRACT

We aimed to retrospectively determine the resection rate of fluid-attenuated inversion recovery (FLAIR) lesions to evaluate the clinical effects of supramaximal resection (SMR) on the survival of patients with glioblastoma (GBM). Thirty-three adults with newly diagnosed GBM who underwent gross total tumor resection were enrolled. The tumors were classified into cortical and deep-seated groups according to their contact with the cortical gray matter. Pre- and postoperative FLAIR and gadolinium-enhanced T1-weighted imaging tumor volumes were measured using a three-dimensional imaging volume analyzer, and the resection rate was calculated. To evaluate the association between SMR rate and outcome, we subdivided patients whose tumors were totally resected into the SMR and non-SMR groups by moving the threshold value of SMR in 10% increments from 0% and compared their overall survival (OS) change. An improvement in OS was observed when the threshold value of SMR was 30% or more. In the cortical group (n = 23), SMR (n = 8) tended to prolong OS compared with gross total resection (GTR) (n = 15), with the median OS of 69.6 and 22.1 months, respectively (p = 0.0945). Contrastingly, in the deep-seated group (n = 10), SMR (n = 4) significantly shortened OS compared with GTR (n = 6), with median OS of 10.2 and 27.9 months, respectively (p = 0.0221). SMR could help prolong OS in patients with cortical GBM when 30% or more volume reduction is achieved in FLAIR lesions, although the impact of SMR for deep-seated GBM must be validated in larger cohorts.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Neurosurgical Procedures/methods , Magnetic Resonance Imaging
11.
Acta Radiol Open ; 12(6): 20584601231184565, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37342484

ABSTRACT

We present a case of the T2-FLAIR mismatch sign in glioblastoma, isocitrate dehydrogenase (IDH)-wild type. The T2-FLAIR mismatch sign is known as a highly specific imaging finding of astrocytoma, IDH-mutant. Meanwhile, IDH-wildtype diffuse astrocytic gliomas with telomerase reverse transcriptase (TERT) promoter mutation in adults are defined as glioblastoma in the 2021 World Health Organization Classification of Tumors of the Central Nervous System, fifth edition (2021 WHO classification), which underscores the importance of molecular information in central nervous system tumors. This indicates even glioblastoma, IDH-wild type may be masquerading as lower-grade glioma in histology. The reasons for the discrepancy between tumors with less aggressive histology and poor prognosis caused by telomerase reverse transcriptase promoter mutation of IDH-wildtype diffuse glioma remain unclear. However, glioblastoma, IDH-wildtype should be considered as a potential differential diagnosis even in patients with the T2-FLAIR mismatch sign in diffuse gliomas.

12.
Neuroradiology ; 65(8): 1205-1213, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37308686

ABSTRACT

PURPOSE: Isocitrate dehydrogenase (IDH)-wildtype diffuse astrocytic glioma with telomerase reverse transcriptase (TERT) promoter mutation is defined as glioblastoma by the WHO 2021 criteria, revealing that TERT promotor mutation is highly associated with tumor aggressiveness. The aim of this study was to identify features from MR spectroscopy (MRS) and multi-exponential models of DWI distinguishing wild-type TERT (TERTw) from TERT promoter mutation (TERTm) in IDH-wildtype diffuse astrocytic glioma. METHODS: Participants comprised 25 adult patients with IDH-wildtype diffuse astrocytic glioma. Participants were classified into TERTw and TERTm groups. Point-resolved spectroscopy sequences were used for MRS data acquisition. DWI was performed with 13 different b-factors. Peak height ratios of NAA/Cr and Cho/Cr were calculated from MRS data. Mean apparent diffusion coefficient (ADC), perfusion fraction (f), diffusion coefficient (D), pseudo-diffusion coefficient (D*), distributed diffusion coefficient (DDC), and heterogeneity index (α) were obtained using multi-exponential models from DWI data. Each parameter was compared between TERTw and TERTm using the Mann-Whitney U test. Correlations between parameters derived from MRS and DWI were also evaluated. RESULTS: NAA/Cr and Cho/Cr were both higher for TERTw than for TERTm. The α of TERTw was smaller than that of TERTm, while the f of TERTw was higher than that of TERTm. NAA/Cr correlated negatively with α, but not with other DWI parameters. Cho/Cr did not show significant correlations with any DWI parameters. CONCLUSION: The combination of NAA/Cr and α may have merit in clinical situation to predict the TERT mutation status of IDH-wildtype diffuse astrocytic glioma without intense enhancement.


Subject(s)
Astrocytoma , Brain Neoplasms , Telomerase , Adult , Humans , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Astrocytoma/pathology , Magnetic Resonance Spectroscopy/methods , Mutation , Telomerase/genetics
13.
Neuroradiology ; 65(9): 1415-1418, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37367991

ABSTRACT

This study aimed to investigate whether arterial spin labeling (ASL) features allow differentiation of oligodendroglioma, IDH-mutant and 1p/19q-codeleted (IDHm-codel) from diffuse glioma with IDH-wildtype (IDHw) or astrocytoma, IDH-mutant (IDHm-noncodel). Participants comprised 71 adult patients with pathologically confirmed diffuse glioma, classified as IDHw, IDHm-noncodel, or IDHm-codel. Subtraction images were generated from paired-control/label images on ASL and used to assess the presence of a cortical high-flow sign. The cortical high-flow sign was defined as increased ASL signal intensity within the tumor-affecting cerebral cortex compared with normal-appearing cortex. Regions without contrast enhancement on conventional MR imaging were targeted. The frequency of the cortical high-flow sign on ASL was compared among IDHw, IDHm-noncodel, and IDHm-codel. As a result, the frequency of the cortical high-flow sign was significantly higher for IDHm-codel than for IDHw or IDHm-noncodel. In conclusion, the cortical high-flow sign could represent a hallmark of oligodendroglioma, IDH-mutant, and 1p/19q-codeleted without intense contrast enhancement.


Subject(s)
Brain Neoplasms , Glioma , Oligodendroglioma , Adult , Humans , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Mutation , Glioma/diagnostic imaging , Glioma/genetics , Biomarkers , Isocitrate Dehydrogenase/genetics
14.
Eur J Radiol ; 158: 110654, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36528957

ABSTRACT

PURPOSE: We evaluated the usefulness of three-dimensional (3D) chemical exchange saturation transfer (CEST) imaging with compressed sensing and sensitivity encoding (CS-SENSE) for differentiating low-grade gliomas (LGGs) from high-grade gliomas (HGGs). METHODS: We evaluated 28 patients (mean age 51.0 ± 13.9 years, 13 males, 15 females) including 12 with LGGs and 16 with HGGs, all acquired using a 3 T magnetic resonance (MR) scanner. Nine slices were acquired for 3D CEST imaging, and one slice was acquired for two-dimensional (2D) CEST imaging. Two radiological technologists each drew a region of interest (ROI) surrounding the high-signal-intensity area(s) on the fluid-attenuated inversion recovery image of each patient. We compared the magnetization transfer ratio asymmetry (MTRasym) at 3.5 ppm in the tumors among the (i) single-slice 2D CEST imaging ("2D"), (ii) all tumor slices of the 3D CEST imaging (3Dall), and (iii) a representative tumor slice of 3D CEST imaging (maximum signal intensity [3Dmax]). The relationship between the MTRasym at 3.5 ppm values measured by these three methods and the Ki-67 labeling index (LI) of the tumors was assessed. Diagnostic performance was evaluated with a receiver operating characteristic analysis. The Ki-67LI and MTRasym at 3.5 ppm values were compared between the LGGs and HGGs. RESULTS: A moderate positive correlation between the MTRasym at 3.5 ppm and the Ki-67LI was observed with all three methods. All methods proved a significantly larger MTRasym at 3.5 ppm for the HGGs compared to the LGGs. All methods showed equivalent diagnostic performance. The signal intensity varied depending on the slice position in each case. CONCLUSIONS: The 3D CEST imaging provided the MTRasym at 3.5 ppm for each slice cross-section; its diagnostic performance was also equivalent to that of 2D CEST imaging.


Subject(s)
Brain Neoplasms , Glioma , Male , Female , Humans , Adult , Middle Aged , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Glioma/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , ROC Curve
15.
Neuroradiology ; 65(3): 529-538, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36434310

ABSTRACT

PURPOSE: Accurate assessment of cerebral perfusion in moyamoya disease is necessary to determine the indication for treatment. We aimed to investigate the usefulness of dynamic PCASL using a variable TR scheme with optimized background suppression in the evaluation of cerebral perfusion in moyamoya disease. METHODS: We retrospectively analyzed the images of 24 patients (6 men and 18 women, mean age 31.4 ± 18.2 years) with moyamoya disease; each of whom was imaged with both dynamic PCASL using the variable-TR scheme and 123IMP SPECT with acetazolamide challenge. ASL dynamic data at 10 phases are acquired by changing the LD and PLD. The background suppression timing was optimized for each phase. CBF and ATT were measured with ASL, and CBF and CVR to an acetazolamide challenge were measured with SPECT. RESULTS: A significant moderate correlation was found between the CBF measured by dynamic PCASL and that by SPECT (r = 0.53, P < 0.001). The CBF measured by dynamic PCASL (52.5 ± 13.3 ml/100 mg/min) was significantly higher than that measured by SPECT (43.0 ± 12.6 ml/100 mg/min, P < 0.001). The ATT measured by dynamic PCASL showed a significant correlation with the CVR measured by SPECT (r = 0.44, P < 0.001). ATT was significantly longer in areas where the CVR was impaired (CVR < 18.4%, ATT = 1812 ± 353 ms) than in areas where it was preserved (CVR > 18.4%, ATT = 1301 ± 437 ms, P < 0.001). The ROC analysis showed a moderate accuracy (AUC = 0.807, sensitivity = 87.7%, specificity = 70.4%) when the cutoff value of ATT was set at 1518 ms. CONCLUSION: Dynamic PCASL using this scheme was found to be useful for assessing cerebral perfusion in moyamoya disease.


Subject(s)
Moyamoya Disease , Male , Humans , Female , Adolescent , Young Adult , Adult , Middle Aged , Magnetic Resonance Imaging/methods , Acetazolamide , Spin Labels , Retrospective Studies , Cerebrovascular Circulation
16.
Sci Rep ; 12(1): 9197, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654812

ABSTRACT

This study aimed to determine whether quantitative relaxometry using synthetic magnetic resonance imaging (SyMRI) could differentiate between two diffuse glioma groups with isocitrate dehydrogenase (IDH)-mutant tumors, achieving an increased sensitivity compared to the qualitative T2-fluid-attenuated inversion recovery (FLAIR) mismatch sign. Between May 2019 and May 2020, thirteen patients with IDH-mutant diffuse gliomas, including seven with astrocytomas and six with oligodendrogliomas, were evaluated. Five neuroradiologists independently evaluated the presence of the qualitative T2-FLAIR mismatch sign. Interrater agreement on the presence of the T2-FLAIR mismatch sign was calculated using the Fleiss kappa coefficient. SyMRI parameters (T1 and T2 relaxation times and proton density) were measured in the gliomas and compared by the Mann-Whitney U test. Receiver operating characteristic curve analysis was used to evaluate the diagnostic performance. The sensitivity, specificity, and kappa coefficient were 57.1%, 100%, and 0.60, respectively, for the qualitative T2-FLAIR mismatch sign. The two types of diffuse gliomas could be differentiated using a cutoff value of 178 ms for the T2 relaxation time parameter with 100% sensitivity, specificity, accuracy, and positive and negative predictive values, with an area under the curve (AUC) of 1.00. Quantitative relaxometry using SyMRI could differentiate astrocytomas from oligodendrogliomas, achieving an increased sensitivity and objectivity compared to the qualitative T2-FLAIR mismatch sign.


Subject(s)
Astrocytoma , Glioma , Oligodendroglioma , Astrocytoma/diagnostic imaging , Astrocytoma/genetics , Glioma/diagnostic imaging , Glioma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging , Oligodendroglioma/diagnostic imaging , Oligodendroglioma/genetics , Pilot Projects
17.
Front Psychiatry ; 13: 836965, 2022.
Article in English | MEDLINE | ID: mdl-35633792

ABSTRACT

Background: Symptoms of obsessive-compulsive disorder (OCD) have been conceptualized as manifestations of decision-making deficits. Patients with OCD exhibit impairment during the decision-making process, as assessed by the Iowa Gambling Task (IGT). This impairment is independent of clinical severity and disease progression. However, the association between the decision-making deficit and resting-state brain activity of patients with OCD has not been examined. Methods: Fifty unmedicated patients with OCD and 55 matched control subjects completed IGT. Resting-state brain activity was examined using the fractional amplitude of low-frequency fluctuations (fALFFs). fALFF analysis focused on the slow-4 and 5 bands. Group comparisons were performed to determine the association between IGT performance and fALFFs. Results: There was a significant group difference in the association between the IGT total net score and slow-4 fALFFs in the left putamen (voxel height threshold of p < 0.001; cluster size threshold of p < 0.05; family wise error-corrected). Higher putamen slow-4 fALFFs were correlated with lower IGT scores for OCD patients (r = -0.485; p < 0.0005) and higher IGT scores for control subjects (r = 0.402; p < 0.005). There was no group difference in the association between the IGT total net score and slow-5 fALFFs. Conclusions: These findings in unmedicated patients demonstrate the importance of resting-state putamen activity for decision-making deficit associated with OCD, as measured by IGT. The inverse correlation may be explained by the hypersensitive response of the putamen in patients with OCD.

18.
Magn Reson Imaging ; 92: 58-66, 2022 10.
Article in English | MEDLINE | ID: mdl-35640858

ABSTRACT

PURPOSE: To evaluate the accuracy of three-dimensional (3D) chemical exchange saturation transfer (CEST) imaging with a compressed sensing (CS) and sensitivity encoding (SENSE) technique (CS-SENSE) for full z-spectrum acquisition. METHODS: All images were acquired on 3-T magnetic resonance imaging (MRI) scanner. In the phantom study, we used the acidoCEST imaging. The phantoms were prepared in seven vials containing different concentrations of iopamidol mixed in phosphate-buffered solution with different pH values. The CEST ratios were calculated from the two CEST effects. We compared the CEST ratios obtained with three different 3D CEST imaging protocols (CS-SENSE factor 5, 7, 9) with those obtained with the 2D CEST imaging as a reference standard. In the clinical study, 21 intracranial tumor patients (mean 49.7 ± 17.2 years, 7 males and 14 females) were scanned. We compared the intratumor magnetization transfer ratio asymmetry (MTRasym) obtained with 3D CEST imaging with those obtained with 2D CEST imaging as a reference standard. RESULTS: A smaller CS-SENSE factor resulted in higher agreement and better correlations with the 2D CEST imaging in the phantom study (CS-SENSE 5; ICC = 0.977, R2 = 0.8943, P < 0.0001: CS-SENSE 7; ICC = 0.970, R2 = 0.9013, P < 0.0001: CS-SENSE 9; ICC = 0.934, R2 = 0.8156 P < 0.0001). In the brain tumors, the means and percentile values of MTRasym at 2.0 and 3.5 ppm showed high linear correlations (R2 = 0.7325-0.8328, P < 0.0001) and high ICCs (0.859-0.907), which enabled successful multi-slice CEST imaging. CONCLUSIONS: The 3D CEST imaging with CS-SENSE provided equivalent contrast to 2D CEST imaging; moreover, a z-spectrum with a wide scan range could be obtained.


Subject(s)
Algorithms , Brain Neoplasms , Brain Neoplasms/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Male , Phantoms, Imaging
19.
Br J Radiol ; 95(1135): 20211066, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35522787

ABSTRACT

OBJECTIVE: To develop and validate deep convolutional neural network (DCNN) models for the diagnosis of adrenal adenoma (AA) using CT. METHODS: This retrospective study enrolled 112 patients who underwent abdominal CT (non-contrast, early, and delayed phases) with 107 adrenal lesions (83 AAs and 24 non-AAs) confirmed pathologically and with 8 lesions confirmed by follow-up as metastatic carcinomas. Three patients had adrenal lesions on both sides. We constructed six DCNN models from six types of input images for comparison: non-contrast images only (Model A), delayed phase images only (Model B), three phasic images merged into a 3-channel (Model C), relative washout rate (RWR) image maps only (Model D), non-contrast and RWR maps merged into a 2-channel (Model E), and delayed phase and RWR maps merged into a 2-channel (Model F). These input images were prepared manually with cropping and registration of CT images. Each DCNN model with six convolutional layers was trained with data augmentation and hyperparameter tuning. The optimal threshold values for binary classification were determined from the receiver-operating characteristic curve analyses. We adopted the nested cross-validation method, in which the outer fivefold cross-validation was used to assess the diagnostic performance of the models and the inner fivefold cross-validation was used to tune hyperparameters of the models. RESULTS: The areas under the curve with 95% confidence intervals of Models A-F were 0.94 [0.90, 0.98], 0.80 [0.69, 0.89], 0.97 [0.94, 1.00], 0.92 [0.85, 0.97], 0.99 [0.97, 1.00] and 0.94 [0.86, 0.99], respectively. Model E showed high area under the curve greater than 0.95. CONCLUSION: DCNN models may be a useful tool for the diagnosis of AA using CT. ADVANCES IN KNOWLEDGE: The current study demonstrates a deep learning-based approach could differentiate adrenal adenoma from non-adenoma using multiphasic CT.


Subject(s)
Adenoma , Deep Learning , Adenoma/diagnostic imaging , Adenoma/pathology , Humans , Neural Networks, Computer , Retrospective Studies , Tomography, X-Ray Computed/methods
20.
Br J Radiol ; 95(1133): 20210392, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35138915

ABSTRACT

OBJECTIVE: To determine whether the γ distribution (GD) model of diffusion MRI is useful in the evaluation of the isocitrate dehydrogenase (IDH) mutation status of glioblastomas. METHODS: 12 patients with IDH-mutant glioblastomas and 54 patients with IDH-wildtype glioblastomas were imaged with diffusion-weighted imaging using 13 b-values from 0 to 1000 s/mm2. The shape parameter (κ) and scale parameter (θ) were obtained with the GD model. Fractions of three different areas under the probability density function curve (f1, f2, f3) were defined as follows: f1, diffusion coefficient (D) < 1.0×10-3 mm2/s; f2, D > 1.0×10-3 and <3.0×10-3 mm2/s; f3, D > 3.0 × 10-3 mm2/s. The GD model-derived parameters measured in gadolinium-enhancing lesions were compared between the IDH-mutant and IDH-wildtype groups. Receiver operating curve analyses were performed to assess the parameters' diagnostic performances. RESULTS: The IDH-mutant group's f1 (0.474 ± 0.143) was significantly larger than the IDH-wildtype group's (0.347 ± 0.122, p = 0.0024). The IDH-mutant group's f2 (0.417 ± 0.131) was significantly smaller than the IDH-wildtype group's (0.504 ± 0.126, p = 0.036). The IDH-mutant group's f3 (0.109 ± 0.060) was significantly smaller than the IDH-wildtype group's (0.149 ± 0.063, p = 0.0466). The f1 showed the best diagnostic performance among the GD model-derived parameters with the area under the curve value of 0.753. CONCLUSION: The GD model could well describe the pathological features of IDH-mutant and IDH-wildtype glioblastomas, and was useful in the differentiation of these tumors. ADVANCES IN KNOWLEDGE: Diffusion MRI based on the γ distribution model could well describe the pathological features of IDH-mutant and IDH-wildtype glioblastomas, and its use enabled the significant differentiation of these tumors. The γ distribution model may contribute to the non-invasive identification of the IDH mutation status based on histological viewpoint.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Humans , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Imaging/methods , Mutation , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...