Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 147: 138-148, 2019 May.
Article in English | MEDLINE | ID: mdl-31097215

ABSTRACT

Sediment load can influence both the population distribution and structures of coral reef communities. We investigated whether coral assemblages on inshore and more turbid reefs differ from those on offshore reefs in the largest coral reefs of the Southwest Atlantic. We compared inshore and offshore reefs (with different turbidity climatologies) in terms of benthic and coral assemblage structures, abundances and individual sizes of coral populations and recruitment patterns. Unexpectedly, the inshore reefs showed higher coral cover and abundance, larger colonies and more recruits. This finding is related to the predominance of sediment-tolerant species on the turbid reefs. In contrast, only Mussismilia braziliensis (main builder of Abrolhos) showed better performance (greater coverage, larger diameter and more recruits) on offshore reefs, apparently behaving as a strong competitor in less turbid environments. These results reinforce the recent thinking of coral reef of turbid environments as resistant ecosystems and potential refuges considering the unnatural increase of sediment supply.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Geologic Sediments
2.
Mar Pollut Bull ; 135: 551-561, 2018 10.
Article in English | MEDLINE | ID: mdl-30301073

ABSTRACT

Phase shift, resulting from coral reef degradation, has been frequently recorded on reefs in optimal conditions, while marginal reefs were considered more resistant due to few records. Noting the lack of marginal reef phase shift studies, we quantitatively assessed their geographic extent in the Southwest Atlantic. Using metadata and a calculated phase shift index, we identified phase shifts from corals to both zoanthid and macroalgal dominance. Positive correlations existed between phase shift and local human impacts for zoanthids: proximity to human populations >100,000 inhabitants, urbanized surfaces and dredged ports and a negative relationship to the endurance of SST >1 °C above normal. Macroalgal shifts positively correlated to ports and urbanized surfaces, higher latitudes and shore proximity, indicating a possible link to nutrient runoff. The high frequency of these phase shifts suggests greater degradation than reported for Caribbean reefs, suggesting that marginal reefs do not have higher natural resistance to human impacts.


Subject(s)
Anthozoa/physiology , Coral Reefs , Animals , Humans , Porifera/physiology , Seaweed/physiology
3.
Environ Manage ; 57(3): 740-52, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26616429

ABSTRACT

An international multi-disciplinary group of 24 researchers met to discuss ocean acidification (OA) during the Brazilian OA Network/Surface Ocean-Lower Atmosphere Study (BrOA/SOLAS) Workshop. Fifteen members of the BrOA Network (www.broa.furg.br) authored this review. The group concluded that identifying and evaluating the regional effects of OA is impossible without understanding the natural variability of seawater carbonate systems in marine ecosystems through a series of long-term observations. Here, we show that the western South Atlantic Ocean (WSAO) lacks appropriate observations for determining regional OA effects, including the effects of OA on key sensitive Brazilian ecosystems in this area. The impacts of OA likely affect marine life in coastal and oceanic ecosystems, with further social and economic consequences for Brazil and neighboring countries. Thus, we present (i) the diversity of coastal and open ocean ecosystems in the WSAO and emphasize their roles in the marine carbon cycle and biodiversity and their vulnerabilities to OA effects; (ii) ongoing observational, experimental, and modeling efforts that investigate OA in the WSAO; and (iii) highlights of the knowledge gaps, infrastructure deficiencies, and OA-related issues in the WSAO. Finally, this review outlines long-term actions that should be taken to manage marine ecosystems in this vast and unexplored ocean region.


Subject(s)
Carbon Cycle , Ecosystem , Seawater/chemistry , Atlantic Ocean , Atmosphere , Biodiversity , Brazil , Carbon Dioxide/analysis , Carbonates , Humans , Oceans and Seas
4.
An Acad Bras Cienc ; 87(4): 1939-57, 2015.
Article in English | MEDLINE | ID: mdl-26536856

ABSTRACT

Coral skeletons contain records of past environmental conditions due to their long life span and well calibrated geochemical signatures. C and O isotope records of corals are especially interesting, because they can highlight multidecadal variability of local climate conditions beyond the instrumental record, with high fidelity and sub-annual resolution. Although, in order to get an optimal geochemical signal in coral skeleton, sampling strategies must be followed. Here we report one of the first coral-based isotopic record from the Equatorial South Atlantic from two colonies of Porites astreoides from the Rocas Atoll (offshore Brazil), a new location for climate reconstruction. We present time series of isotopic variation from profiles along the corallite valley of one colony and the apex of the corallite fan of the other colony. Significant differences in the isotopic values between the two colonies are observed, yet both record the 2009/2010 El Niño event - a period of widespread coral bleaching - as anomalously negative δ18O values (up to -1 permil). δ13C is found to be measurably affected by the El Niño event in one colony, by more positive values (+0.39 ‰), and together with a bloom of endolithic algae, may indicate physiological alteration of this colony. Our findings indicate that corals from the Rocas Atoll can be used for monitoring climate oscillations in the tropical South Atlantic Ocean.


Subject(s)
Carbon Isotopes/analysis , Climate Change , Coral Reefs , Environmental Monitoring , Oxygen Isotopes/analysis , Atlantic Ocean , Tropical Climate
5.
PLoS One ; 10(10): e0138800, 2015.
Article in English | MEDLINE | ID: mdl-26448294

ABSTRACT

Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups.


Subject(s)
Anthozoa/physiology , Coral Reefs , Animals , Ecosystem , Photosynthesis/physiology
6.
PLoS One ; 10(1): e0116944, 2015.
Article in English | MEDLINE | ID: mdl-25629532

ABSTRACT

Consequences of reef phase shifts on fish communities remain poorly understood. Studies on the causes, effects and consequences of phase shifts on reef fish communities have only been considered for coral-to-macroalgae shifts. Therefore, there is a large information gap regarding the consequences of novel phase shifts and how these kinds of phase shifts impact on fish assemblages. This study aimed to compare the fish assemblages on reefs under normal conditions (relatively high cover of corals) to those which have shifted to a dominance of the zoantharian Palythoa cf. variabilis on coral reefs in Todos os Santos Bay (TSB), Brazilian eastern coast. We examined eight reefs, where we estimated cover of corals and P. cf. variabilis and coral reef fish richness, abundance and body size. Fish richness differed significantly between normal reefs (48 species) and phase-shift reefs (38 species), a 20% reduction in species. However there was no difference in fish abundance between normal and phase shift reefs. One fish species, Chaetodon striatus, was significantly less abundant on normal reefs. The differences in fish assemblages between different reef phases was due to differences in trophic groups of fish; on normal reefs carnivorous fishes were more abundant, while on phase shift reefs mobile invertivores dominated.


Subject(s)
Anthozoa , Biodiversity , Coral Reefs , Ecosystem , Fishes , Animals , Brazil
7.
Mar Environ Res ; 97: 1-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24508052

ABSTRACT

Extensive degradation of coral reefs makes it imperative to create functional models that demonstrate ecological processes which occur in alternative states that persist over time. These models provide important information that can help in decision making regarding management measures for both the prevention of further degradation and the recovery of these ecosystems. Development of these models requires identifying and testing the ecological processes that will impose the reduction of coral cover and, preferably, identifying the disturbance that triggers this phenomenon. For this reason, research programs are a useful tool which allows a focus on the production of information for modeling. It should start with survey investigations and tests of hypotheses concerning the cause of the reduction of coral cover. Subsequently, projects should be guided by the most probable hypotheses, focusing on one guild or functional group at a time until the "trigger" process which unleashed the disturbance is identified. Even if incomplete, these models already provide information for focusing management steps.


Subject(s)
Anthozoa/physiology , Coral Reefs , Ecosystem , Models, Biological , Animals , Environmental Monitoring , Population Dynamics
8.
Mar Pollut Bull ; 77(1-2): 55-62, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24229784

ABSTRACT

In Brazil, where reefs occur in markedly turbid environments, the relationship between sedimentation/organic matter and corals is poorly known. Thus, the ex situ effects of sediment with and without organic matter over the ΔF/Fm and physical state of Mussismilia braziliensis were analyzed. The ΔF/Fm and coral physical state, evaluated through the susceptibility index to sedimentation (SI), were measured in seven colonies exposed to sedimentation (0-450 mg cm(-2) day(-1)) free of organic matter after 45 days of exposure, and in 12 colonies exposed to sedimentation (0-500 mg cm(-2) day(-1)) with organic matter content (10%), in which case ΔF/Fm was measured after 72 h and SI after 120 h. In both cases there were effects of increasing sedimentation on the SI with no effect on ΔF/Fm. Despite the tolerance to high sedimentation rates shown by this coral, we noted that the presence of organic matter might reduce its tolerance to sedimentation stress.


Subject(s)
Anthozoa/physiology , Coral Reefs , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Adaptation, Physiological , Animals , Brazil , Stress, Physiological , Water Pollutants, Chemical/toxicity
9.
Rev Biol Trop ; 58 Suppl 1: 1-31, 2010 May.
Article in English | MEDLINE | ID: mdl-20873038

ABSTRACT

Coral reefs along the Eastern Brazilian coast extend for a distance of 800 km from 12 degrees to 18 degrees S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90's in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonics > 20cm per reef site) and of the coral recruits (colonies < 2cm per square meter), and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5 km from the coast, are in poorer condition than the reefs located more than 5 km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearshore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct human activities such as cuthrophic waters associated with sewage pollution, higher sedimentation rates and water turbidity, inadequate use of the reefs and over exploitation of their resources. The implementation of a more effective coral reef monitoring program in Bahia is mandatory, in order to improve the strategies for protection and management efforts of the reefs.


Subject(s)
Anthozoa , Coral Reefs , Environmental Monitoring/methods , Animals , Atlantic Ocean , Brazil , Conservation of Natural Resources , Population Density
10.
Rev. biol. trop ; 58(supl.1): 1-31, May 2010. ilus, graf, mapas, tab
Article in English | LILACS | ID: lil-637952

ABSTRACT

Coral reefs along the Eastern Brazilian coast extend for a distance of 800km from 12° to 18°S. They are the largest and the richest reefs of Brazil coasts, and represent the Southernmost coral reefs of the Southwestern Atlantic Ocean. Few reef surveys were performed in the 90’s in reef areas of Bahia State, particularly in the Abrolhos reef complex, in the Southernmost side of the state. A monitoring program applying the Atlantic and Gulf Rapid Reef Assessment (AGRRA) protocol was initiated in 2000, in the Abrolhos National Marine Park, after the creation of the South Tropical America (STA) Regional Node of the Global Coral Reef Monitoring Network (GCRMN) by the end of 1999. From that time up to 2005, nine reef surveys were conducted along the coast of the State of Bahia, including 26 reefs, with 95 benthic sites, 280 benthic transects, 2025 quadrats and 3537 stony corals. Eighteen of the 26 investigated reefs were assessed once and eight reefs of Abrolhos were surveyed twice to four times. The MDS ordination, analysis of similarity (ANOSIM, one way and two-way nested layouts) and similarity percentages (SIMPER) tests were applied to investigate the spatial and temporal patterns of reef vitality. Four indicators of the coral vitality: live coral cover, the density of the larger corals (colonies >20cm per reef site) and of the coral recruits (colonies<2cm per square meter), and the percentage of macroalgae indicate that the nearshore reefs, which are located less than 5km from the coast, are in poorer condition than the reefs located more than 5km off the coast. A higher density of coral colonies, lower macroalgal index, higher relative percent of turf algae and higher density of coral recruits in offshore reefs compared to the nearshore reefs are the conditions that contribute more than 80% to the dissimilarity between them. The offshore reefs are in better vital condition than the nearhore reefs and have a set of vitality indices more closely related to the Northwestern Atlantic reefs than the nearshore reef. These have been most severely impacted by the effects of direct human activities such as euthrophic waters associated with sewage pollution, higher sedimentation rates and water turbidity, inadequate use of the reefs and over exploitation of their resources. The implementation of a more effective coral reef monitoring program in Bahia is mandatory, in order to improve the strategies for protection and management efforts of the reefs. Rev. Biol. Trop. 58 (Suppl. 1): 1-31. Epub 2010 May 01.


Desde el año 2000 se inició un programa de monitoreo utilizando el protocolo AGRRA en el Parque Nacional Marino de Abrolhos en el marco de la creación del Nodo STA de la GCRMN. Entre 2000 y 2005 se realizaron varias evaluaciones en 26 arrecifes. Los patrones espaciales y temporales de la vitalidad de los arrecifes fueron estudiados mediante análisis de ordenación (MDS), similaridad (ANOSIM) y porcentajes de similaridad (SIMPER). La cobertura de coral vivo, la densidad de colonias grandes (>20cm) y de reclutas (<2cm) y la cobertura de macroalgas indicaron que los arrecifes ubicados a más de 5km de la costa presentan una mejor condición que aquellos ubicados a menos de 5km de la costa. Los arrecifes más alejados registraron una mayor densidad de colonias, un bajo índice de macroalgas, un relativo más alto porcentaje de coberturas algales y una más alta densidad de reclutas en comparación con los arrecifes más cercanos. Los arrecifes más cercanos a la costa han sido más severamente afectados por las actividades humanas. Por ejemplo, eutrofización de aguas (contaminación de aguas residuales), mayor sedimentación y turbidez del agua, mal uso de los arrecifes y sobreexplotación de sus recursos. La implementación de un programa integral de monitoreo en Bahia es urgente y obligatorio para mejorar las estrategias de protección y los esfuerzos de manejo de sus arrecifes.


Subject(s)
Animals , Anthozoa , Coral Reefs , Environmental Monitoring/methods , Atlantic Ocean , Brazil , Conservation of Natural Resources , Population Density
11.
Mar Pollut Bull ; 56(5): 1008-14, 2008 May.
Article in English | MEDLINE | ID: mdl-18348890

ABSTRACT

Although reef corals worldwide have sustained epizootics in recent years, no coral diseases have been observed in the southwestern Atlantic Ocean until now. Here we present an overview of the main types of diseases and their incidence in the largest and richest coral reefs in the South Atlantic (Abrolhos Bank, eastern Brazil). Qualitative observations since the 1980s and regular monitoring since 2001 indicate that coral diseases intensified only recently (2005-2007). Based on estimates of disease prevalence and progression rate, as well as on the growth rate of a major reef-building coral species (the Brazilian-endemic Mussismilia braziliensis), we predict that eastern Brazilian reefs will suffer a massive coral cover decline in the next 50 years, and that M. braziliensis will be nearly extinct in less than a century if the current rate of mortality due to disease is not reversed.


Subject(s)
Anthozoa , Conservation of Natural Resources , Animal Diseases/epidemiology , Animals , Atlantic Ocean , Brazil , Prevalence
12.
An Acad Bras Cienc ; 80(1): 205-14, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18345388

ABSTRACT

This paper shows that the location of the shoreface bank reefs along the northeastern and eastern coasts of Brazil, in a first order approximation, seem to be controlled by the deficit of sediment in the coastal system. The sediment transport pattern defined by a numerical modeling of wave refraction diagrams, representing circa 2000 km of the northeastern and eastern coasts of Brazil, permitted the regional-scale reproduction of several drift cells of net longshore sediment transport. Those drift cells can reasonably explain the coastal sections that present sediment surplus or sediment deficit, which correspond, respectively, to regions where there is deposition and erosion or little/no deposition of sand. The sediment deficit allows the exposure and maintenance of rocky substrates to be free of sediment, a favorable condition for the fixation and development of coral larvae.


Subject(s)
Anthozoa , Geologic Sediments , Seawater , Water Movements , Animals , Brazil , Population Density , Population Dynamics
13.
An. acad. bras. ciênc ; 80(1): 205-214, Mar. 2008. ilus, graf, mapas
Article in English | LILACS | ID: lil-477427

ABSTRACT

This paper shows that the location of the shoreface bank reefs along the northeastern and eastern coasts of Brazil, in a first order approximation, seem to be controlled by the deficit of sediment in the coastal system. The sediment transport pattern defined by a numerical modeling of wave refraction diagrams, representing circa 2000 km of the northeastern and eastern coasts of Brazil, permitted the regional-scale reproduction of several drift cells of net longshore sediment transport. Those drift cells can reasonably explain the coastal sections that present sediment surplus or sediment deficit, which correspond, respectively, to regions where there is deposition and erosion or little/no deposition of sand. The sediment deficit allows the exposure and maintenance of rocky substrates to be free of sediment, a favorable condition for the fixation and development of coral larvae.


Este trabalho mostra que a localização dos recifes de coral ao longo dos litorais leste e nordeste do Brasil, em uma aproximação de primeira ordem, parece ser controlada pelo déficit de sedimentos no sistema costeiro. O padrão de transporte de sedimentos definido por modelagem numérica a partir de diagramas de refração de ondas, representando cerca de 2000 km dos litorais leste e nordeste do Brasil, permitiu a reprodução, em escala regional, de várias células de deriva litorânea efetiva de sedimentos. Essas células de deriva podem razoavelmente explicar os segmentos costeiros que representam superávit, ou deficit de sedimentos que correspondem, respectivamente, a regiões onde existe deposição e erosão ou pouca/nenhuma deposição de areia. O deficit de sedimentos propicia a exposição e manutenção de substratos rochosos livres de sedimento, uma condição favorável para a fixação e desenvolvimento das larvas de coral.


Subject(s)
Animals , Anthozoa , Geologic Sediments , Seawater , Water Movements , Brazil , Population Density , Population Dynamics
14.
Mar Pollut Bull ; 51(5-7): 599-611, 2005.
Article in English | MEDLINE | ID: mdl-15913660

ABSTRACT

Coral species composition of drilled cores from emergent bank reefs, and coral cover of the surface of old and living reefs located along the coast of the state of Bahia, Eastern Brazil, revealed that there is a marked change in the occurrence of the major building coral species in different time intervals of the reef structure, as well as in the living surface of reefs located in two different geographical sites. Holocene core sections from two reef areas (12 degrees 40'S-38 degrees 00'W and 18 degrees 00'S-39 degrees 00'W) have as major reef builders, on its topmost core interval (3 to 4 ky old), the endemic coral Mussismilia braziliensis Verrill, 1868, which also dominate on the 2.5-3.5 ky old surfaces of truncated reef tops. At the base of the cores (the 2m lower interval, older than 4 ky BP), another endemic coral Mussismilia harttii Verrill, 1868 is the dominant reef component. The relative abundance of M. braziliensis on the living surfaces of shallow reefs from both areas, shows that in the southern area, it is up to 98% on reefs located 60 km off the coast, in depths between 3 and 4m, but do not exceed 1.3% on the surface of the northern reefs located 1-2 km off the coast in depths 4-5m. The Holocene falling sea level that occurred along the coast of Brazil since 5.1 ky BP, causes an increasing runoff into the area of coastal reefs. This phenomenon may have affected the nearshore reef building fauna, replacing a more susceptive coral fauna with one better adapted to low light levels and higher sediment influx. The high turbidity associated with early Holocene shelf flooding, should also be responsible for the absence of M. braziliensis during the initial stages of reef buildup in Brazil. At the present time, the rapidly increasing human pressure, due to changes in land uses of the coastal zone (increasing sedimentation rate, nutrification of coastal waters, industrial pollution) and underwater practices, such as overfishing and an intense tourism, is aggravating the recovery capacity of this already naturally threatened coral community. If this situation coupled with increasing sea surface temperature persists, modern coral reef growth, in Brazil cannot be maintained and the major reef building coral species of the reefs in Bahia, a remnant endemic coral fauna will very soon appear in the list of endangered species.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources , Ecosystem , Environment , Fossils , Animals , Brazil , Demography , Geography , Geologic Sediments/analysis , Population Dynamics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...