Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Anaerobe ; 87: 102852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614291

ABSTRACT

OBJECTIVE: Treponema denticola has been strongly implicated in the pathogenesis of chronic periodontitis. Previously, we reported that the potential transcriptional regulator TDE_0259 (oxtR1) is upregulated in the bacteriocin ABC transporter gene-deficient mutant. OxtR1 may regulate genes to adapt to environmental conditions during colonization; however, the exact role of the gene in T. denticola has not been reported. Therefore, we investigated its function using an oxtR1-deficient mutant. METHODS: The growth rates of the wild-type and oxtR1 mutant were monitored under anaerobic conditions; their antibacterial agent susceptibility and gene expression were assessed using a liquid dilution assay and DNA microarray, respectively. An electrophoretic mobility shift assay was performed to investigate the binding of OxtR1 to promoter regions. RESULTS: The growth rate of the bacterium was accelerated by the inactivation of oxtR1, and the mutant exhibited an increased minimum inhibitory concentration against ofloxacin. We observed a relative increase in the expression of genes associated with potential ferrodoxin (TDE_0260), flavodoxin, ABC transporters, heat-shock proteins, DNA helicase, iron compounds, and lipoproteins in the mutant. OxtR1 expression increased upon oxygen exposure, and oxtR1 complementation suppressed the expression of potential ferrodoxin. Our findings also suggested that OxtR1 binds to a potential promoter region of the TDE_0259-260 operon. Moreover, the mutant showed a marginal yet significantly faster growth rate than the wild-type strain under H2O2 exposure. CONCLUSION: The oxygen-sensing regulator OxtR1 plays a role in regulating the expression of a potential ferrodoxin, which may contribute to the response of T. denticola to oxygen-induced stress.


Subject(s)
Gene Expression Regulation, Bacterial , Treponema denticola , Treponema denticola/genetics , Treponema denticola/drug effects , Treponema denticola/growth & development , Treponema denticola/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Promoter Regions, Genetic , Oxidative Stress , Anaerobiosis , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Oxygen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Stress, Physiological
2.
Microbiol Resour Announc ; 13(3): e0119723, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38334399

ABSTRACT

This study reports the complete genome sequence of Fusobacterium vincentii strain TDC100. The complete circular chromosome of strain TDC100 was obtained and assembled using a combination of short- and long-read sequencing.

3.
mBio ; 14(3): e0065823, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37042761

ABSTRACT

Pathogenic microbial ecosystems are often polymicrobial, and interbacterial interactions drive emergent properties of these communities. In the oral cavity, Streptococcus gordonii is a foundational species in the development of plaque biofilms, which can contribute to periodontal disease and, after gaining access to the bloodstream, target remote sites such as heart valves. Here, we used a transposon sequencing (Tn-Seq) library of S. gordonii to identify genes that influence fitness in a murine abscess model, both as a monoinfection and as a coinfection with an oral partner species, Porphyromonas gingivalis. In the context of a monoinfection, conditionally essential genes were widely distributed among functional pathways. Coinfection with P. gingivalis almost completely changed the nature of in vivo gene essentiality. Community-dependent essential (CoDE) genes under the coinfection condition were primarily related to DNA replication, transcription, and translation, indicating that robust growth and replication are required to survive with P. gingivalis in vivo. Interestingly, a group of genes in an operon encoding streptococcal receptor polysaccharide (RPS) were associated with decreased fitness of S. gordonii in a coinfection with P. gingivalis. Individual deletion of two of these genes (SGO_2020 and SGO_2024) resulted in the loss of RPS production by S. gordonii and increased susceptibility to killing by neutrophils. P. gingivalis protected the RPS mutants by inhibiting neutrophil recruitment, degranulation, and neutrophil extracellular trap (NET) formation. These results provide insight into genes and functions that are important for S. gordonii survival in vivo and the nature of polymicrobial synergy with P. gingivalis. Furthermore, we show that RPS-mediated immune protection in S. gordonii is dispensable and detrimental in the presence of a synergistic partner species that can interfere with neutrophil killing mechanisms. IMPORTANCE Bacteria responsible for diseases originating at oral mucosal membranes assemble into polymicrobial communities. However, we know little regarding the fitness determinants of the organisms that initiate community formation. Here, we show that the extracellular polysaccharide of Streptococcus gordonii, while important for streptococcal survival as a monoinfection, is detrimental to survival in the context of a coinfection with Porphyromonas gingivalis. We found that the presence of P. gingivalis compensates for immune protective functions of extracellular polysaccharide, rendering production unnecessary. The results show that fitness determinants of bacteria in communities differ substantially from those of individual species in isolation. Furthermore, constituents of communities can undertake activities that relieve the burden of energetically costly biosynthetic reactions on partner species.


Subject(s)
Coinfection , Streptococcus gordonii , Animals , Mice , Streptococcus gordonii/genetics , Coinfection/microbiology , Ecosystem , Biofilms , Mouth
4.
J Oral Microbiol ; 15(1): 2165001, 2023.
Article in English | MEDLINE | ID: mdl-36687169

ABSTRACT

Background: Periodontitis is caused by a dysbiotic shift in the dental plaque microbiome. Fusobacterium nucleatum is involved in the colonization of Porphyromonas gingivalis, which plays a key role in dysbiosis, via coaggregation and synergy with this microorganism. Aim: We investigated the effect of diffusible signaling molecules from P. gingivalis ATCC 33277 on F. nucleatum TDC 100 to elucidate the synergistic mechanisms involved in dysbiosis. Methods: The two species were cocultured separated with an 0.4-µm membrane in tryptic soy broth, and F. nucleatum gene expression profiles in coculture with P. gingivalis were compared with those in monoculture. Results: RNA sequencing revealed 139 genes differentially expressed between the coculture and monoculture. The expression of 52 genes was upregulated, including the coaggregation ligand-coding gene. Eighty-seven genes were downregulated. Gene Ontology analysis indicated enrichment for the glycogen synthesis pathway and a decrease in de novo synthesis of purine and pyrimidine. Conclusion: These results indicate that diffusible signaling molecules from P. gingivalis induce metabolic changes in F. nucleatum, including an increase in polysaccharide synthesis and reduction in de novo synthesis of purine and pyrimidine. The metabolic changes may accelerate biofilm formation by F. nucleatum with P. gingivalis. Further, the alterations may represent potential therapeutic targets for preventing dysbiosis.

5.
Mol Oral Microbiol ; 38(3): 212-223, 2023 06.
Article in English | MEDLINE | ID: mdl-36641800

ABSTRACT

The Msp protein complex and the serine protease dentilisin are the best-characterized virulence factors in Treponema denticola, the major etiological agent of chronic periodontitis. In addition to these outer sheath factors, the cysteine protease dentipain contributes to pathogenicity, but its secretion, processing, cellular localization, and role in T. denticola virulence are not fully understood. In this study, we found that full-sized dentipain (74-kDa) and the 52-kDa truncated form of the enzyme are located, respectively, in the outer sheath derived from T. denticola dentilisin- and the Msp-deficient mutants. Furthermore, dentipain was barely detected in the wild-type strain. These results suggest that dentilisin and Msp, the major outer sheath proteins, are involved in the secretion and maturation of dentipain. Inactivation of the dentipain gene slowed the growth of T. denticola, and the effect was more profound in serum-free medium than in serum-containing medium. Several genes, including those encoding transporters and methyl-accepting chemotaxis proteins, were differentially expressed in the dentipain-deficient mutant. Furthermore, the mutant strain was more hydrophobic than the wild-type strain. Finally, the mutant showed less autoaggregation activity and adhesion to IgG in a serum-free medium than the wild-type strain. These findings suggest that dentipain contributes to the virulence of T. denticola by facilitating adhesion and acquisition of nutrients essential for colonization and proliferation in the gingival crevice under serum-rich conditions.


Subject(s)
Cysteine Proteases , Treponema denticola , Treponema denticola/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chymotrypsin/genetics , Chymotrypsin/metabolism , Cysteine Proteases/genetics , Peptide Hydrolases , Treponema/genetics
6.
Sci Rep ; 12(1): 21629, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36517589

ABSTRACT

We report a self-induced spatially-coherent dot array consisting of fourteen units of vertical-cavity surface-emitting modes that exhibit spatially uniform spectra. A 47.5 µm total beam width and 0.5° narrow emission are achieved using an oblong cavity enclosed with a flat top mirror, cylindrically curved bottom mirror, and side facet. Notably, terminating the side of the cavity with a perpendicular facet enhances the horizontal propagation, which couples with the vertical resonance in each dot, similar to the case of master lasers in injection-locked lasers that delocalize the modes. Conventional semiconductor lasers, edge-emitting lasers, and vertical-cavity surface-emitting lasers have a Fabry-Pérot cavity; furthermore, emission and resonance are in identical directions, limiting the beam width to micrometers. Though the present structure has the same scheme of propagation, the right-angled facet synchronizes the modes and drastically expands the beam width.

7.
Bull Tokyo Dent Coll ; 63(1): 13-22, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35173086

ABSTRACT

Chronic periodontitis is an infectious disease caused by periodontopathic bacteria in subgingival plaque. One major pathogen of this disease, Treponema denticola, has several virulence factors, including a major surface protein (Msp) and the surface protease dentilisin. The cytopathic effects of periodontopathic bacteria on epithelial cells disrupt the integrity of the barrier junction, resulting in the inflammation of periodontal tissue. The aim of this study was to investigate the effect of T. denticola virulence factors dentilisin and Msp on epithelial cells. The effects of T. denticola wild-type, Msp-mutant, and dentilisin-mutant strains on the contact junction in Madin-Darby canine kidney epithelial cells was evaluated based on ohmic values. Cultured oral carcinoma epithelial cells were scratched and exposed to the selected T. denticola strains and cell migration determined. Subsequent degradation of adherence proteins and proteins in the contact junctions was evaluated. Dissociation of cell contact junctions was detected in cells infected with wild-type T. denticola approximately 30 min after infection, but not in those exposed to the mutants. Inhibition of migration was observed in the wild-type and Msp-deficient mutants. The adherent proteins focal adhesion kinase, ZO-1, and paxillin were hydrolyzed by infection with the wild-type and Msp mutants. These results indicate that T. denticola disrupts the function of epithelial cells by hydrolyzing proteins at the intercellular junction and inhibiting healing of epithelial cells via hydrolyzed proteins associated with focal adhesion; Msp was also associated with these effects.


Subject(s)
Bacterial Proteins , Treponema denticola , Animals , Bacterial Proteins/genetics , Dogs , Epithelial Cells/metabolism , Madin Darby Canine Kidney Cells , Peptide Hydrolases/metabolism , Treponema denticola/metabolism , Virulence Factors/metabolism
8.
Anaerobe ; 72: 102466, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34673216

ABSTRACT

OBJECTIVE: The human oral cavity harbors several bacteria. Among them, Capnocytophaga ochracea, a facultative anaerobe, is responsible for the early phase of dental plaque formation. In this phase, the tooth surface or tissue is exposed to various oxidative stresses. For colonization in the dental plaque phase, a response by hydrogen peroxide (H2O2)-sensing transcriptional regulators, such as OxyR, may be necessary. However, to date, no study has elucidated the role of OxyR protein in C. ochracea. METHODS: Insertional mutagenesis was used to create an oxyR mutant, and gene expression was evaluated by reverse transcription-polymerase chain reaction and quantitative real-time reverse transcription-polymerase chain reaction. Bacterial growth curves were generated by turbidity measurement, and the sensitivity of the oxyR mutant to H2O2 was assessed using the disc diffusion assay. Finally, a two-compartment system was used to assess biofilm formation. RESULTS: The oxyR mutant grew slower than the wild-type under anaerobic conditions. The agar diffusion assay revealed that the oxyR mutant had increased sensitivity to H2O2. The transcript levels of oxidative stress defense genes, sod, ahpC, and trx, were lower in the oxyR mutant than in the wild-type strain. The turbidity of C. ochracea, simultaneously co-cultured with Streptococcus gordonii, was lower than that observed under conditions of homotypic growth. Moreover, the percentage decrease in growth of the oxyR mutant was significantly higher than that of the wild-type. CONCLUSIONS: These results show that OxyR in C. ochracea regulates adequate in vitro growth and escapes oxidative stress.


Subject(s)
Bacterial Proteins/genetics , Capnocytophaga/genetics , Capnocytophaga/metabolism , Gene Silencing , Gram-Negative Bacterial Infections/microbiology , Oxidative Stress , Repressor Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Genetic Loci , Hydrogen Peroxide/metabolism , Mutagenesis, Insertional , Mutation , Repressor Proteins/metabolism
9.
Microbiol Immunol ; 65(12): 551-558, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34499368

ABSTRACT

Treponema denticola, a helically shaped motile microorganism, is a major pathogen of chronic periodontitis. Major surface protein (Msp) and dentilisin are virulence factors of T. denticola that are located on the outer sheath. The motility of T. denticola is deeply involved in colonization on and invasion into the host tissue. The outer sheath is located at the interface between the environment and T. denticola, and its components may also contribute to its motility via interaction with the materials outside the cells. The study aimed to clarify whether Msp or dentilisin contributes to the motility of T. denticola on solid surfaces, termed crawling, by investigating their effects using Msp-deficient and dentilisin-deficient T. denticola strains. Motility was analyzed by measuring the colony size in agar plates and velocity was analyzed using dark-field microscopy. The colony area of the mutant strains was smaller than that of the wild-type strain. The crawling velocity of the mutant strains was lower than that of the wild-type strain, with the lowest velocity observed in the dentilisin-deficient strain. Additionally, the ratio of the crawling distance by one revolution to the protoplasmic cylinder pitch (an indicator of the crawling efficiency) in the dentilisin mutant was significantly lower than that in the wild type strain and the Msp mutant. Together, these results indicate that dentilisin facilitates the crawling-dependent surface spreading of T. denticola.


Subject(s)
Peptide Hydrolases , Treponema denticola , Bacterial Proteins/genetics , Chymotrypsin , Treponema denticola/genetics , Virulence Factors/genetics
10.
Bull Tokyo Dent Coll ; 62(2): 89-98, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33994426

ABSTRACT

Capnocytophaga ochracea possesses a type-IX secretion system that exports proteins which have a gliding motility-associated C-terminal (CTD) domain. This system is found in several species of the Bacteroidetes phylum. Hyalin, a large protein encoded by Coch_0033 in C. ochracea ATCC 27872, has a CTD domain and is posited to be involved in quorum sensing according to the database of the Kyoto Encyclopedia of Genes and Genomes. This suggests that it plays a role in biofilm formation via interbacterial communication. The aim of this study was to investigate the potential role of the hyalin-like protein coded by the Coch_0033 gene in gliding and biofilm formation of C. ochracea. A hyalin-like protein-deficient mutant strain of C. ochracea, designated mutant WR-1, was constructed through insertion of the ermF-ermAM cassette into the target gene. The spreading feature at the edge of the colony was lost in the mutant strain. Crystal violet and confocal laser scanning microscopy revealed no difference between the quantity of biofilm organized by the mutant and that organized by the wild-type strain. These data suggest that the hyalin-like protein encoded by the Coch_0033 gene is indeed involved in C. ochracea gliding activity.


Subject(s)
Capnocytophaga , Hyalin , Bacterial Proteins/genetics , Bacteroidetes/genetics , Biofilms , Capnocytophaga/genetics
11.
Methods Mol Biol ; 2210: 173-184, 2021.
Article in English | MEDLINE | ID: mdl-32815138

ABSTRACT

Treponema denticola is a potent periodontal pathogen that forms a red complex with Porphyromonas gingivalis and Tannerella forsythia. It has many virulence factors, yet there are only a few reports detailing these factors. Among them, dentilisin is a well-documented surface protease. Dentilisin is reported to be involved in nutrient uptake, bacterial coaggregation, complement activation, evasion of the host immune system, inhibition of the hemostasis system, and cell invasion as a result of its action, in addition to its original proteolysis function. Therefore, characterization of dentilisin, and clarifying the relationship between T. denticola and the onset of periodontal disease will be important to better understanding this disease. In this chapter, we explain the methods for analysis of dentilisin activity and pathogenicity.


Subject(s)
Bacterial Proteins/immunology , Peptide Hydrolases/immunology , Periodontitis/microbiology , Treponema denticola/pathogenicity , Virulence Factors/immunology , Animals , Bacterial Proteins/genetics , Electroporation/methods , Humans , Mice, Inbred BALB C , Mutation , Peptide Hydrolases/genetics , Periodontal Pocket/immunology , Periodontal Pocket/microbiology , Periodontitis/immunology , Transformation, Genetic , Treponema denticola/genetics , Treponema denticola/immunology , Virulence Factors/genetics
12.
J Oral Microbiol ; 12(1): 1829404, 2020 Oct 11.
Article in English | MEDLINE | ID: mdl-33149843

ABSTRACT

Objective Treponema denticola is involved in 'chronic' periodontitis pathogenesis. The mechanism underlying the regulation of the expression of its virulence factors, such as major surface protein (Msp) and prolyl-phenylalanine specific protease (dentilisin) is yet to be clarified. We determined the gene expression profiles of Msp- and dentilisin-deficient mutants of T. denticola to identify the regulation network of gene expression concomitant with the inactivation of these virulence genes. Methods Gene expression profiles of T. denticola ATCC 35405 (wild type), dentilisin-deficient mutant K1, and msp-deficient mutant DMSP3 were determined using DNA microarray analysis and quantitative real-time reverse transcription PCR (qRT-PCR). Msp and dentilisin protein levels were determined by immunoblotting and proteolytic activity assays. Results In addition to several differentially expressed genes, dentilisin expression was reduced in DMSP3; msp expression was significantly reduced in K1 (p < 0.05), both at the gene and protein levels. To identify the regulatory system involved, the expression levels of the potential regulators whose expression showed changes in the mutants were evaluated using qRT-PCR. Transcriptional regulators TDE_0127 and TDE_0814 were upregulated in K1, and the potential repressor, TDE_0344, was elevated in DMSP3. Conclusions Dentilisin and Msp expression were interrelated, and gene expression regulators, such as TDE_0127, may be involved in their regulation.

13.
Bull Tokyo Dent Coll ; 59(4): 265-275, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30333370

ABSTRACT

Treponema denticola, an anaerobic spirochete found mainly in the oral cavity, is associated with periodontal disease and has a variety of virulence factors. Although in vitro studies have shown that T. denticola is able to penetrate epithelial cell monolayers, its effect on the epithelial barrier junction is not known. Human gingival epithelial cells are closely associated with adjacent membranes, forming barriers in the presence of tight junction proteins, including zonula occludens-1 (ZO-1), claudin-1, and occludin. Tight junction proteins are also expressed by Madin-Darby canine kidney (MDCK) cells in culture. In this study, the MDCK cell profile was investigated following infection with T. denticola (ATCC 35405) wild-type, as well as with its dentilisin-deficient mutant, K1. Basolateral exposure of MDCK cell monolayers to T. denticola at a multiplicity of infection (MOI) of 104 resulted in a decrease in transepithelial electrical resistance (TER). Transepithelial electrical resistance in MDCK cell monolayers also decreased following apical exposure to T. denticola (MOI=104), although this took longer with basolateral exposure. The effect on the TER was time-dependent and required the presence of live bacteria. Meanwhile, MDCK cell viability showed a decrease with either basolateral or apical exposure. Immunofluorescence analysis demonstrated decreases in the amounts of immunoreactive ZO-1 and claudin-1 in association with disruption of cell-cell junctions in MDCK cells exposed apically or basolaterally to T. denticola. Western blot analysis demonstrated degradation of ZO-1 and claudin-1 in culture lysates derived from T. denticola-exposed MDCK cells, suggesting a bacteria-induced protease capable of cleaving these tight junction proteins.


Subject(s)
Bacterial Proteins/toxicity , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Madin Darby Canine Kidney Cells/drug effects , Occludin/metabolism , Peptide Hydrolases/toxicity , Tight Junction Proteins/metabolism , Treponema denticola/metabolism , Zonula Occludens-1 Protein/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Toxins , Cell Survival/drug effects , Dogs , Electric Impedance , Epithelial Cells/microbiology , Epithelial Cells/pathology , Humans , Intercellular Junctions/drug effects , Madin Darby Canine Kidney Cells/metabolism , Madin Darby Canine Kidney Cells/microbiology , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Treponema denticola/genetics , Treponema denticola/pathogenicity , Virulence Factors
14.
Microb Pathog ; 123: 467-472, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30076984

ABSTRACT

Treponema denticola is a major etiologic agent of chronic periodontitis. On the outer sheath of T. denticola, several proteins, such as the major outer sheath protein and dentilisin were detected, and among them, a 95 kDa protein which has not yet been characterized. The aim of this study was to characterize the function of this 95 kDa protein containing gene cluster. A gene encoding this 95 kDa protein (TDE_1072) of T. denticola was inactivated by homologous recombination. We compared growth curves between the TDE_1072 mutant and wild-type strains as well as differences in gene expression by DNA microarray analysis. Differential expression of genes identified by microarray analysis was confirmed by quantitative reverse transcription-polymerase chain reaction. The proteins encoded by TDE_1072, TDE_1073, TDE_1074, TDE_1075, and TDE_1076 shared respective similarities to the substrate-binding domain (DppA) of an ABC-type dipeptide/oligopeptide/nickel transport system, and to the permease components (DppB and DppC) and ATPase components (DppD and DppF) of an ABC-type dipeptide/oligopeptide/nickel transport system. Inactivation of dppA attenuated the growth of T. denticola and dppA-dppF were co-transcribed. In contrast, expression of oppB-oppF was up-regulated in the mutant. Our findings indicate that TDE_1072 may be a potential periplasmic solute binding protein encoded by dppA that is involved in the organization of a peptide uptake system with dppB-dppF.


Subject(s)
Membrane Transport Proteins/chemistry , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Treponema denticola/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Lipoproteins/genetics , Mutation , Open Reading Frames , Periplasmic Binding Proteins/genetics , Recombinant Proteins/genetics , Treponema denticola/genetics , Treponema denticola/growth & development
15.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Article in English | MEDLINE | ID: mdl-29982599

ABSTRACT

Treponema denticola is a major pathogen in periodontal disease and is frequently isolated from the lesions of patients with chronic periodontitis. Treponema denticola utilizes serum components as nutrient sources so as to colonize and proliferate in the gingival crevice. However, the mechanisms of serum utilization remain unclear. Therefore, the aim of the present study was to identify T. denticola serum utilization genes. Precultured T. denticola cells were suspended in a tryptone-yeast extract-gelatin-volatile fatty acids medium containing 0, 1% and 10% serum, respectively, and incubated anaerobically for 17 h. Total RNA was isolated, and T. denticola gene expression was compared by microarray and reverse transcription-polymerase chain reaction. In serum-depleted conditions, the expression levels of a potential hydroxylamine reductase, several ABC transporters, and phosphoenolpyruvate synthase were increased, while those of genes encoding methyl-accepting chemotaxis proteins and a transcriptional regulator were decreased. These results suggest that T. denticola may uptake serum components mainly through the action of ABC transporters. In particular, the decrease in the dmcA expression level with decreasing serum concentration suggests its involvement in chemotaxis toward serum-rich environments.


Subject(s)
Bacterial Proteins/genetics , Serum/metabolism , Transcription, Genetic , Treponema denticola/genetics , Treponema denticola/metabolism , Animals , Bacterial Proteins/metabolism , Culture Media/metabolism , Rabbits , Serum/microbiology , Treponema denticola/growth & development
16.
Pathog Dis ; 76(5)2018 07 01.
Article in English | MEDLINE | ID: mdl-29771309

ABSTRACT

Interaction between two periodontal pathogens, Porphyromonas gingivalis and Treponema denticola, contributes to plaque biofilm formation. Porphyromonas gingivalis forms aggregates with T. denticola through its adhesion/hemagglutinin domain (Hgp44). In this study, we investigated the specific domain of P. gingivalis Hgp44 responsible for adhesion to T. denticola using expression vectors harboring P. gingivalis Hgp44 DNA sequences encoding amino acid residues 1-419. Six plasmids harboring fragments in this region were generated by PCR amplification and self-ligation, and recombinant proteins r-Hgp44 (residues 1-419), r-Hgp441 (residues 1-124), r-Hgp442 (1-199), r-Hgp443 (1-316), r-Hgp444 (199-419), r-Hgp445 (124-198) and r-Hgp446 (199-316) were produced, as confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. r-Hgp44, r-Hgp443 and r-Hgp446 showed greater adhesion to T. denticola sonicates than the control, as determined by enzyme-linked immunosorbent assay. r-Hgp446 reduced the coaggregation of P. gingivalis and T. denticola. Scanning electron and confocal laser scanning microscopy analyses revealed that r-Hgp446 reduced dual-species biofilm formation. Our results indicate that residues 199-316 of P. gingivalis Hgp44 are mainly responsible for adhesion to T. denticola; inhibiting this domain could potentially disrupt periodontopathic biofilm formation and maturation.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Adhesion , Porphyromonas gingivalis/pathogenicity , Treponema denticola/physiology , Adhesins, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay , Microscopy, Atomic Force , Microscopy, Confocal , Protein Domains , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
17.
Med Mycol J ; 58(4): E139-E143, 2017.
Article in Japanese | MEDLINE | ID: mdl-29187716

ABSTRACT

Surface antigen protein 2 (Csa2) is a member of the Candida albicans Common in Fungal Extracellular Membranes (CFEM) protein superfamily. We previously established its role in iron acquisition in C. albicans. However, the other roles of Csa2 remain unknown. Here, we compared growth, morphological transition, and biofilm formation among wild-type, Csa2-mutant, and complemented strains of C. albicans. Deletion of the Csa2 gene resulted in smaller and reduced colony growth, significant attenuation of the dimorphic transition under serum-inducing conditions, and reduced biofilm formation; complementation restored these levels to those of the wild-type. Our findings demonstrated that Csa2 participated in yeast-to-hyphae morphological switching under serum-inducing conditions and contributed to the biofilm formation of C. albicans. This work, therefore, provides novel insights into the potential roles of Csa2 in virulence of C. albicans.


Subject(s)
Antigens, Surface/metabolism , Biofilms/growth & development , Candida albicans/physiology , Candida albicans/pathogenicity , Fungal Proteins/metabolism , Antigens, Surface/genetics , Candida albicans/genetics , Candida albicans/growth & development , Fungal Proteins/genetics , Virulence/genetics
18.
PLoS One ; 12(9): e0185027, 2017.
Article in English | MEDLINE | ID: mdl-28931045

ABSTRACT

Porphyromonas gingivalis is a bacterium frequently isolated from chronic periodontal lesions and is involved in the development of chronic periodontitis. To colonize the gingival crevice, P. gingivalis has to adapt to environmental stresses. Microbial gene expression is regulated by transcription factors such as those in two-component systems and extracytoplasmic function (ECF) sigma factors. ECF sigma factors are involved in the regulation of environmental stress response genes; however, the roles of individual ECF sigma factors are largely unknown. The purpose of this study was to investigate the functions, including autoaggregation, hemagglutination, gingipain activity, susceptibility to antimicrobial agents, and surface structure formation, of P. gingivalis ECF sigma factors encoded by SigP (PGN_0274), SigCH (PGN_0319), PGN_0450, PGN_0970, and SigH (PGN_1740). Various physiological aspects of the sigP mutant were affected; autoaggregation was significantly decreased at 60 min (p < 0.001), hemagglutination activity was markedly reduced, and enzymatic activities of Kgp and Rgps were significantly decreased (p < 0.001). The other mutants also showed approximately 50% reduction in Rgps activity. Kgp activity was significantly reduced in the sigH mutant (p < 0.001). No significant differences in susceptibilities to tetracycline and ofloxacin were observed in the mutants compared to those of the wild-type strain. However, the sigP mutant displayed an increased susceptibility to ampicillin, whereas the PGN_0450 and sigH mutants showed reduced susceptibility. Transmission electron microscopy images revealed increased levels of outer membrane vesicles formed at the cell surfaces of the sigP mutant. These results indicate that SigP is important for bacterial surface-associated activities, including gingipain activity, autoaggregation, hemagglutination, vesicle formation, and antimicrobial susceptibility.


Subject(s)
Bacteroidaceae Infections/microbiology , Chronic Periodontitis/microbiology , Hemagglutination , Porphyromonas gingivalis/physiology , Sigma Factor/metabolism , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chronic Periodontitis/genetics , Female , Gene Expression Regulation, Bacterial , Mice , Mice, Inbred BALB C , Mutation/genetics , Sigma Factor/genetics , Surface Properties , Virulence
19.
Anaerobe ; 43: 82-90, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27940243

ABSTRACT

Extracytoplasmic function (ECF) sigma factors play an important role in the bacterial response to various environmental stresses. Porphyromonas gingivalis, a prominent etiological agent in human periodontitis, possesses six putative ECF sigma factors. So far, information is limited on the ECF sigma factor, PGN_0319. The aim of this study was to investigate the role of PGN_0319 (SigCH) of P. gingivalis, focusing on the regulation of hmuY and hmuR, which encode outer-membrane proteins involved in hemin utilization, and cdhR, a transcriptional regulator of hmuYR. First, we evaluated the gene expression profile of the sigCH mutant by DNA microarray. Among the genes with altered expression levels, those involved in hemin utilization were downregulated in the sigCH mutant. To verify the microarray data, quantitative reverse transcription PCR analysis was performed. The RNA samples used were obtained from bacterial cells grown to early-log phase, in which sigCH expression in the wild type was significantly higher than that in mid-log and late-log phases. The expression levels of hmuY, hmuR, and cdhR were significantly decreased in the sigCH mutant compared to wild type. Transcription of these genes was restored in a sigCH complemented strain. Compared to the wild type, the sigCH mutant showed reduced growth in log phase under hemin-limiting conditions. Electrophoretic mobility shift assays showed that recombinant SigCH protein bound to the promoter region of hmuY and cdhR. These results suggest that SigCH plays an important role in the early growth of P. gingivalis, and directly regulates cdhR and hmuYR, thereby playing a potential role in the mechanisms of hemin utilization by P. gingivalis.


Subject(s)
Gene Expression Regulation, Bacterial , Hemin/metabolism , Periodontitis/microbiology , Porphyromonas gingivalis/genetics , Sigma Factor/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Molecular , Mutation , Operon , Porphyromonas gingivalis/metabolism , Recombinant Proteins , Sigma Factor/genetics
20.
BMC Oral Health ; 17(1): 18, 2016 Jul 16.
Article in English | MEDLINE | ID: mdl-27422166

ABSTRACT

BACKGROUND: Treponema denticola is strongly associated with the development of periodontal disease. Both synergistic and antagonistic effects are observed among bacterial species in the process of biofilm formation. Bacteriocin-related genes have not yet been fully characterized in periodontopathic bacteria. The aim of this study was to detect and characterize bacteriocin-associated proteins in T. denticola. METHODS: The whole genome sequence of T. denticola ATCC 35405 was screened with a Streptococcus mutans bacteriocin immunity protein (ImmA/Bip) sequence. The prevalence of homologous genes in T. denticola strains was then investigated by Southern blotting. Expression of the genes was evaluated by qRT-PCR. RESULTS: In the genome sequence of T. denticola, an amino acid sequence coded by the open reading frame TDE_0719 showed 26 % identity with the S. mutans ImmA. Furthermore, two protein sequences encoded by TDE_0425 and TDE_2431 in T. denticola ATCC 35405 showed ~40 % identity with that coded by TDE_0719. Therefore, TDE_0425, TDE_0719, and TDE_2431 were designated as tepA1, A2, and A3, respectively. Open reading frames showing similarity to the HlyD family of secretion proteins were detected downstream of tepA1, A2, and A3. They were designated as tepB1, B2, and B3, respectively. A gene harboring a bacteriocin-like signal sequence was detected upstream of tepA1. The prevalence of tepA1 and A2 differed among Treponema species. Susceptibility to chloramphenicol and ofloxacin was slightly decreased in a tepA2 mutant while that to kanamycin was increased. Expression of tepA3-B3 was increased in the tepA2 mutant. CONCLUSION: These results indicate that T. denticola ATCC 35405 has three potential bacteriocin export proteins and that the presence of these genes differs among the Treponema strains. TepA3-B3 of the corresponding proteins may be involved in resistance to chloramphenicol.


Subject(s)
ATP-Binding Cassette Transporters/isolation & purification , Bacteriocins/metabolism , Treponema denticola/chemistry , Amino Acid Sequence , Bacterial Proteins , Treponema
SELECTION OF CITATIONS
SEARCH DETAIL
...