Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hepatology ; 61(2): 437-46, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25203900

ABSTRACT

UNLABELLED: The human liver reacts to hepatitis C virus (HCV) with a balanced response consisting of host anti- and proviral activities. To explore these subtle host responses, we used oligonucleotide microarrays to investigate the differential gene expression between two groups of liver samples with high and low HCV loads (>100-fold difference). We identified and validated 26 genes that were up-regulated in livers with high HCV loads, including transmembrane protease serine 2 (TMPRSS2). Trypsin inhibitors inhibited the infection of Huh7-25-CD81 cells with cell-culture-derived HCV (HCVcc) of Japanese fulminant hepatitis 1 isolate at the postbinding and entry step, and trypsin enhanced HCVcc infection at an early stage of infection. Several major transmembrane serine proteases, in particular, furin and hepsin, were detected in Huh7-25-CD81 cells, but TMPRSS2 was not. Huh7-25-CD81 cell clones stably expressing TMPRSS2- WT (wild type) and inactive TMPRSS2-mutant genes showed positive and negative enhancement of their susceptibility to HCVcc infection, respectively. The enhanced susceptibility of TMPRSS2-WT Huh7-25-CD81 cells was confirmed by knockdown of TMPRSS2 using small interfering RNA. The cell-surface protease activity of TMPRSS2-WT cells was markedly active in the cleavage of QAR and QGR, corresponding to amino acid residues at P3 to P1. CONCLUSION: The cell-surface activity of a trypsin-like serine protease, such as TMPRSS2, activates HCV infection at the postbinding and entry stage. Host transmembrane serine proteases may be involved in the sensitivity, persistence, and pathogenesis of HCV infection and be possible targets for antiviral therapy.


Subject(s)
Hepatitis C, Chronic/metabolism , Host-Pathogen Interactions , Serine Endopeptidases/metabolism , Aged , Cell Line , Female , Gene Expression Profiling , Hepatitis C, Chronic/virology , Humans , Liver/metabolism , Liver/virology , Male , Middle Aged
2.
Mol Cancer ; 13: 99, 2014 May 04.
Article in English | MEDLINE | ID: mdl-24885408

ABSTRACT

BACKGROUND: Vasohibin-2 (VASH2) has been identified as an endogenous and vascular endothelial growth factor (VEGF)-independent angiogenic factor that is highly expressed in tumor cells. In the present study, we aimed to determine whether pre-existing vascular changes can be used to predict tumor transformation as benign or malignant. We sought to characterize microvascular changes and tumor development in the intestinal tract of ApcMin/+ mice and ApcMin/+/Vash2-/- mice. METHODS: ApcMin/+ mice provide a unique orthotopic model for the development of spontaneous adenomatous polyposis and subsequent carcinomas, a phenomenon termed the adenoma-carcinoma sequence. ApcMin/+ mice were mated with Vash2-/- mice with a mixed C57BL/6 background and the resulting pups were screened for the Min mutation and for the Vash2-/- gene by PCR. Intestinal tumors from ApcMin/+ mice and ApcMin/+/Vash2-/- mice were removed and either frozen or epon-embedded for subsequent analyses. For 3-dimensional imaging using confocal laser-scanning microscopy and transmission electron microscopy, cryosections were made, and immunofluorescent staining for various markers was performed. RESULTS: We found that structural abnormalities in tumor vessels from benign tumors resembled those in malignant tumors. In addition, a novel angiogenic factor, vasohibin-2 (VASH2) protein, was detected around tumor blood vessels in late-stage adenomas and adenocarcinomas, but was absent from early-stage adenomas in ApcMin/+ mice. Tumors used to examine endogenous VASH2 (derived from CMT93 colon carcinomas) were less vascularized in Vash2-/- mice and were more regular than those seen in wild-type (WT) mice. In addition, tumors in Vash2-/- mice were smaller than those in WT mice. Furthermore, cross-breeding of mice homozygous for a deletion of Vash2 with mice heterozygous for the APC mutation resulted in animals that showed a significant decrease in the number of polyps in the small intestine. CONCLUSION: We propose that VASH2 may modulate the onset of tumors in the gastrointestinal tract by regulating tumor angiogenesis.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Adenomatous Polyposis Coli/genetics , Angiogenic Proteins/genetics , Gastrointestinal Tract/metabolism , Gene Expression Regulation, Neoplastic , Neovascularization, Pathologic/prevention & control , Adenomatous Polyposis Coli/metabolism , Adenomatous Polyposis Coli/pathology , Adenomatous Polyposis Coli Protein/metabolism , Angiogenic Proteins/metabolism , Animals , Blood Vessels/metabolism , Blood Vessels/pathology , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Crosses, Genetic , Disease Progression , Female , Gastrointestinal Tract/blood supply , Gastrointestinal Tract/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Signal Transduction
3.
Cell Tissue Res ; 338(1): 29-35, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19823824

ABSTRACT

The guinea-pig ileocaecal junction including the valve was studied by immunohistochemistry to clarify the organization of the muscle bundles, the enteric nerves and the interstitial cells of Cajal (ICC). This region clearly exhibited characteristic features in the distribution patterns of ICC in a proximal to distal direction: (1) the thickened portion of the terminal ileum immediately adjacent to the ileocecal junction contained many ICC throughout the circular (ICC-CM) and longitudinal (ICC-LM) muscle layers, but ICC were few or absent in the rest of the ileum; (2) the ileal side of the valve contained ICC associated with the deep muscular plexus (ICC-DMP) as in the small intestine, whereas ICC-DMP were absent in the caecal side as in the caecum; (3) the valve contained many ICC-CM and ICC-LM in both the ileal and caecal sides; (4) many ICC associated with the myenteric plexus were observed in both the ileal and caecal sides of the valve, whereas they were only sparsely found in the caecum; (5) ICC were also observed around the submucosal plexus in a confined area of the terminal ileum and the ileocaecal valve. These observations provide morphological evidence that the terminal ileum and ileocaecal valve are specially equipped for their active involvement in the movement of the junctional area.


Subject(s)
Cecum/anatomy & histology , Ileum/anatomy & histology , Interstitial Cells of Cajal/cytology , Animals , Cecum/metabolism , Guinea Pigs , Humans , Ileum/metabolism , Immunohistochemistry , Interstitial Cells of Cajal/metabolism
4.
Cell Tissue Res ; 328(2): 271-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17252245

ABSTRACT

The distribution and ultrastructure of the interstitial cells of Cajal (ICC) has been examined in the small intestine of the frog Xenopus laevis, as the physiological significance of these cells remains obscure in amphibians and other lower vertebrates. The present study has revealed the existence of a special type of interstitial cell in the tunica muscularis of the small intestine of Xenopus; this cell is characterized by the presence of numerous caveolae, many small mitochondria, and the formation of intercellular connections with the same type of cell. Since these ultrastructural features are shared with mammalian ICC, the cells in the small intestine of Xenopus probably correspond to ICC. These cells also form close contacts with neighboring smooth muscle cells and with nerve varicosities containing accumulations of synaptic vesicles. These cellular networks are likely to be involved in the transmission of nerve impulses to muscle cells, as has been suggested for mammalian tissues. However, true gap junctions have not been detected; they occur neither between the same type of cells nor between the putative ICC and smooth muscle cells. The widespread distribution of ICC or equivalent cells in different groups of vertebrates, together with the conservation of their ultrastructural features, suggests that they differentiated early in vertebrate evolution to play key regulatory roles in gastrointestinal movement.


Subject(s)
Intestine, Small/cytology , Intestine, Small/ultrastructure , Muscle, Smooth/ultrastructure , Xenopus laevis , Animals , Neuroglia/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...