Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 121(4): 806-12, 1997 Jun.
Article in English | MEDLINE | ID: mdl-9208152

ABSTRACT

1. Desensitization of mu- and kappa-opioid receptor-mediated inhibition of voltage-dependent Ca2+ channels was studied in a Xenopus oocyte translation system. 2. In the oocytes coexpressing kappa-opioid receptors with N- or Q-type Ca2+ channel alpha 1 and beta subunits, the kappa-agonist, U50488H, inhibited both neuronal Ca2+ channel current responses in a pertussis toxin-sensitive manner and the inhibition was reduced by prolonged agonist exposure. 3. More than 10 min was required to halve the inhibition of Q-type channels by the kappa-agonist. However, the half-life for the inhibition of N-type channels was only 6 +/- 1 min. In addition, in the oocytes coexpressing mu-opioid receptors with N-type or Q-type channels, the uncoupling rate of the mu-receptor-mediated inhibition of N-channels was also faster than that of Q-type channels. 4. In the oocytes coexpressing both mu- and kappa-receptors with N-type channels, stimulation of either receptor resulted in a cross-desensitization of the subsequent response to the other agonist. Treatment of oocytes with either H-8 (100 microM), staurosporine (400 nM), okadaic acid (200 nM), phorbol myristate acetate (5 nM) or forskolin (50 microM) plus phosphodiesterase inhibitor did not affect either the desensitization or the agonist-evoked inhibition of Ca2+ channels. 5. These results suggest that the rate of rapid desensitization is dependent on the alpha 1 subtype of the neuronal Ca2+ channel, and that a common phosphorylation-independent mechanism underlies the heterologous desensitization between opioid receptor subtypes.


Subject(s)
Calcium Channels/metabolism , Oocytes/drug effects , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer , Animals , Antihypertensive Agents/pharmacology , Membrane Potentials/drug effects , Protein Kinases/metabolism , Pyrrolidines/pharmacology , Time Factors , Xenopus
2.
Neurosci Lett ; 217(1): 13-6, 1996 Oct 11.
Article in English | MEDLINE | ID: mdl-8905728

ABSTRACT

Xenopus oocytes were used for investigating the cAMP-dependent modulation of N- and Q-type Ca2+ channels. Treatments to increase intracellular cAMP concentration with forskolin (FK) and 3-isobutyl-1-methylxanthine (IBMX) markedly potentiated Q-type Ca2+ channel current in oocytes coexpressing alpha 1A and beta subunits, and the enhancement was reversed by protein kinase A inhibitors. Moderate enhancement was observed by FK+IBMX in N-type channel current, of which potentiation was equivalent to that of endogenous Ca2+ channel current being activated by exogenously-expressed beta subunits. No potentiation was observed in the oocyte-native Ca2+ channel current. These results suggest that Q-type Ca2+ channels are more susceptible to the protein kinase A-mediated facilitation than N-type channels. A significant role of Ca2+ channel beta subunits for the cAMP-dependent positive modulation was also suggested.


Subject(s)
1-Methyl-3-isobutylxanthine/pharmacology , Calcium Channels/physiology , Colforsin/pharmacology , Cyclic AMP/physiology , Enzyme Inhibitors/pharmacology , Oocytes/physiology , Analysis of Variance , Animals , Calcium Channels/drug effects , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Female , Oocytes/drug effects , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...