Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(2): 1128-41, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24265322

ABSTRACT

ß-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/ß-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the ß-arrestin function in Wnt/ß-catenin signaling. We demonstrate that ß-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. ß-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that ß-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that ß-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIß. Importantly, cells lacking ß-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that ß-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that ß-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by ß-arrestin- and Dishevelled-associated kinases.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arrestins/metabolism , Cell Membrane/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Tumor Suppressor Proteins/metabolism , Wnt3A Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Arrestins/genetics , Blotting, Western , Cells, Cultured , Dishevelled Proteins , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , Humans , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Mice , Mice, Knockout , Microscopy, Confocal , Minor Histocompatibility Antigens , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , RNA Interference , Tumor Suppressor Proteins/genetics , Wnt3A Protein/genetics , beta-Arrestins
2.
J Neuroinflammation ; 9: 111, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22647544

ABSTRACT

BACKGROUND: WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/ß-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits ß-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. METHODS: Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-(35)S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. RESULTS: Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric G(i/o) proteins to reduce cyclic AMP levels and to activate a G(i/o) protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2) axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. CONCLUSIONS: Thus, WNT-5A-induced and G protein-dependent signaling to ERK1/2 is important for the regulation of proinflammatory responses in mouse primary microglia cells. We show for the first time that WNT-5A/G protein signaling mediates physiologically important processes in primary mammalian cells with natural receptor and G protein stochiometry. Consequently, WNT-5A emerges as an important means of astrocyte-microglia communication and we, therefore, suggest WNT-5A as a new player in neuroinflammatory conditions, such as neurodegenerative disease, hypoxia, stroke, injury and infection.


Subject(s)
Heterotrimeric GTP-Binding Proteins/physiology , Inflammation Mediators/physiology , MAP Kinase Signaling System/physiology , Microglia/pathology , Wnt Proteins/physiology , Animals , Animals, Newborn , Cells, Cultured , Mice , Mice, Inbred C57BL , Microglia/physiology , Wnt-5a Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...