Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 66(3): e0224221, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35007140

ABSTRACT

About 55% of U.S. Candida auris clinical cases were reported from New York and New Jersey from 2016 through 2020. Nearly all New York-New Jersey clinical isolates (99.8%) were fluconazole resistant, and 50% were amphotericin B resistant. Echinocandin resistance increased from 0% to 4% and pan-resistance increased from 0 to <1% for New York C. auris clinical isolates but not for New Jersey, highlighting the regional differences.


Subject(s)
Antifungal Agents , Candida , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida auris , Microbial Sensitivity Tests , New Jersey/epidemiology , New York/epidemiology
2.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Article in English | MEDLINE | ID: mdl-32839219

ABSTRACT

An ongoing Candida auris outbreak in the New York metropolitan area is the largest recorded to date in North America. Laboratory surveillance revealed NY C. auris isolates are resistant to fluconazole, with variable resistance to other currently used broad-spectrum antifungal drugs, and that several isolates are panresistant. Thus, there is an urgent need for new drugs with a novel mechanism of action to combat the resistance challenge. Manogepix (MGX) is a first-in-class agent that targets the fungal Gwt1 enzyme. The prodrug fosmanogepix is currently in phase 2 clinical development for the treatment of fungal infections. We evaluated the susceptibility of 200 New York C. auris isolates to MGX and 10 comparator drugs using CLSI methodology. MGX demonstrated lower MICs than comparators (MIC50 and MIC90, 0.03 mg/liter; range, 0.004 to 0.06 mg/liter). The local epidemiological cutoff value (ECV) for MGX indicated all C. auris isolates were within the population of wild-type (WT) strains; 0.06 mg/liter defines the upper limit of wild type (UL-WT). MGX was 8- to 32-fold more active than the echinocandins, 16- to 64-fold more active than the azoles, and 64-fold more active than amphotericin B. No differences were found in the MGX or comparators' MIC50, MIC90, or geometric mean (GM) values when subsets of clinical, surveillance, and environmental isolates were evaluated. The range of MGX MIC values for six C. auris panresistant isolates was 0.008 to 0.015 mg/liter, and the median and mode MIC values were 0.015 mg/liter, demonstrating that MGX retains activity against these isolates. These data support further clinical evaluation of fosmanogepix for the treatment of C. auris infections, including highly resistant isolates.


Subject(s)
Antifungal Agents , Candida , Aminopyridines , Antifungal Agents/pharmacology , Disease Outbreaks , Isoxazoles , Microbial Sensitivity Tests , New York , North America
SELECTION OF CITATIONS
SEARCH DETAIL
...