Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 2565, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510218

ABSTRACT

Diabetic retinopathy, retinopathy of prematurity and retinal vein occlusion are potentially blinding conditions largely due to their respective neovascular components. The development of real-time in vivo molecular imaging methods, to assess levels of retinal neovascularization (NV), would greatly benefit patients afflicted with these conditions. mRNA hybridization techniques offer a potential method to image retinal NV. The success of these techniques hinges on the selection of a target mRNA whose tissue levels and spatial expression patterns correlate closely with disease burden. Using a model of oxygen-induced retinopathy (OIR), we previously observed dramatic increases in retinal endoglin that localized to neovascular structures (NV), directly correlating with levels of neovascular pathology. Based on these findings, we have investigated Endoglin mRNA as a potential marker for imaging retinal NV in OIR mice. Also of critical importance, is the application of innovative technologies capable of detecting mRNAs in living systems with high sensitivity and specificity. To detect and visualize endoglin mRNA in OIR mice, we have designed and synthesized a novel imaging probe composed of short-hairpin anti-sense (AS) endoglin RNA coupled to a fluorophore and black hole quencher (AS-Eng shRNA). This assembly allows highly sensitive fluorescence emission upon hybridization of the AS-Eng shRNA to cellular endoglin mRNA. The AS-Eng shRNA is further conjugated to a diacyl-lipid (AS-Eng shRNA-lipid referred to as probe). The lipid moiety binds to serum albumin facilitating enhanced systemic circulation of the probe. OIR mice received intraperitoneal injections of AS-Eng shRNA-lipid. Ex vivo imaging of their retinas revealed specific endoglin mRNA dependent fluorescence superimposed on neovascular structures. Room air mice receiving AS-Eng shRNA-lipid and OIR mice receiving a non-sense control probe showed little fluorescence activity. In addition, we found that cells in neovascular lesions labelled with endoglin mRNA dependent fluorescence, co-labelled with the macrophage/microglia-associated marker IBA1. Others have shown that cells expressing macrophage/microglia markers associate with retinal neovascular structures in proportion to disease burden. Hence we propose that our probe may be used to image and to estimate the levels of retinal neovascular disease in real-time in living systems.


Subject(s)
RNA, Messenger/metabolism , Retina/metabolism , Animals , Cell Survival/physiology , Dynamic Light Scattering , Female , Humans , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Neovascularization, Pathologic/metabolism , Pregnancy , Retina/physiology
2.
ACS Chem Biol ; 15(11): 3004-3012, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33080135

ABSTRACT

Bone marrow-derived progenitor cells and macrophages are known to migrate into the retina in response to inflammation and neovascularization. These migratory cells might play important regulatory roles in the pathogenesis of neovascularization, a common complication observed in diabetic retinopathy, retinopathy of prematurity, and retinal vein occlusion. Hypoxia-inducible factor 1α (HIF-1α) has been shown to contribute to the pathogenesis of retinal inflammation and neovascularization. However, contributions of monocyte-derived macrophages to neovascularization are largely unknown. We hypothesized that selective visualization of these microglia/macrophages could be a powerful method for predicting the onset of neovascularization and its progression at the molecular level. In this report, we describe the synthesis of a new hybrid nanoparticle to visualize HIF-1α mRNA selectively in microglia/macrophages in a mouse model of neovascularization. HIF-1α expression was confirmed in MRC-1 positive monocytes/macrophages as well as in CD4 positive T-cells and CD19 positive B-cells using single-cell RNA sequencing data analysis. The imaging probes (AS- or NS-shRNA-lipid) were synthesized by conjugating diacyl-lipids to short hairpin RNA with an antisense sequence complementary to HIF-1α mRNA and a fluorophore that is quenched by a black hole quencher. We believe that imaging mRNA selectively in tissue specific microglia/macrophages could be a powerful method for predicting the onset of neovascularization, its progression, and its response to therapy.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/genetics , RNA, Messenger/genetics , Retinal Neovascularization/genetics , Animals , Disease Models, Animal , Female , Gene Expression , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Optical Imaging , Prognosis , RNA, Messenger/analysis , Retina/metabolism , Retina/pathology , Retinal Neovascularization/diagnosis , Retinal Neovascularization/pathology
3.
Mol Pharm ; 15(12): 5514-5520, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30350640

ABSTRACT

Mouse laser-induced choroidal neovascularization (mouse LCNV) recapitulates the "wet" form of human age-related macular degeneration (AMD). Vascular cell adhesion molecule-1 (VCAM-1) is a known inflammatory biomarker, and it increases in the choroidal neovascular tissues characteristic of this experimental model. We have designed and constructed gold nanoparticles (AuNPs) functionalized with hairpin-DNA that incorporates an antisense sequence complementary to VCAM-1 mRNA (AS-VCAM-1 hAuNPs) and tested them as optical imaging probes. The 3' end of the hairpin is coupled to a near-infrared fluorophore that is quenched by the AuNP surface via Förster resonance energy transfer (FRET). Hybridization of the antisense sequence to VCAM-1 mRNA displaces the fluorophore away from the AuNP surface, inducing fluorescent activity. In vitro testing showed that hAuNPs hybridize to an exogenous complementary oligonucleotide within a pH range of 4.5-7.4, and that they are stable at reduced pH. LCNV mice received tail-vein injections of AS-VCAM-1 hAuNPs. Hyperspectral imaging revealed the delivery of AS-VCAM-1 hAuNPs to excised choroidal tissues. Fluorescent images of CNV lesions were obtained, presumably in response to the hybridization of AS-hAuNPs to LCNV-induced VCAM-1 mRNA. This is the first demonstration of systemic delivery of hAuNPs to ocular tissues to facilitate mRNA imaging of any target.


Subject(s)
Choroidal Neovascularization/diagnostic imaging , Molecular Probes/administration & dosage , RNA, Messenger/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Wet Macular Degeneration/diagnostic imaging , Animals , Biomarkers/metabolism , Choroid/blood supply , Choroid/diagnostic imaging , Choroid/pathology , Choroid/radiation effects , Choroidal Neovascularization/etiology , Choroidal Neovascularization/pathology , Disease Models, Animal , Fluorescent Dyes/administration & dosage , Fluorescent Dyes/chemistry , Gold/administration & dosage , Gold/chemistry , Humans , Intravital Microscopy/methods , Lasers/adverse effects , Male , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Mice , Mice, Inbred C57BL , Molecular Imaging/methods , Molecular Probes/chemistry , Oligodeoxyribonucleotides, Antisense/administration & dosage , Oligodeoxyribonucleotides, Antisense/chemistry , Optical Imaging/methods , Vascular Cell Adhesion Molecule-1/genetics , Wet Macular Degeneration/etiology , Wet Macular Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...