Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36821663

ABSTRACT

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

2.
Rev Sci Instrum ; 90(5): 055103, 2019 May.
Article in English | MEDLINE | ID: mdl-31153288

ABSTRACT

We report on the design and performance of a double-sided coincidence velocity map imaging spectrometer optimized for electron-ion and ion-ion coincidence experiments studying inner-shell photoionization of gas-phase molecules with soft X-ray synchrotron radiation. The apparatus employs two microchannel plate detectors equipped with delay-line anodes for coincident, time- and position-resolved detection of photoelectrons and Auger electrons with kinetic energies up to 300 eV on one side of the spectrometer and photoions up to 25 eV per unit charge on the opposite side. We demonstrate its capabilities by measuring valence photoelectrons and ion spectra of neon and nitrogen and by studying channel-resolved photoelectron and Auger spectra along with fragment-ion momentum correlations for chlorine 2p inner-shell ionization of cis- and trans-1,2-dichloroethene.

3.
Nat Commun ; 8(1): 2091, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29233965

ABSTRACT

Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li1.17-x Ni0.21Co0.08Mn0.54O2, these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by > 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.

4.
Materials (Basel) ; 10(2)2017 Feb 04.
Article in English | MEDLINE | ID: mdl-28772490

ABSTRACT

This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C3S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C-S-H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C3S hydration was significantly extended, the degree of hydration of C3S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C3S in the C3S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C3S paste was not. The chemical shifts of the Si K edge peaks in the near-edge X-ray fine structure of C-S-H in the C3S-HVFA paste directly indicate that Al substitutes for Si in C-S-H and that the additional silicate provided by the HVFA induces an enhanced degree of silicate polymerization. This new spectromicroscopic approach, supplemented with 27Al and 29Si magic-angle spinning nuclear magnetic resonance spectroscopy and transmission electron microscopy, turned out to be a powerful characterization tool for studying a local atomic binding structure of C-S-H in C3S-HVFA system and presented results consistent with previous literature.

5.
Phys Chem Chem Phys ; 19(21): 13419-13431, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28524198

ABSTRACT

The fragmentation dynamics of 2,6- and 3,5-difluoroiodobenzene after iodine 4d inner-shell photoionization with soft X-rays are studied using coincident electron and ion momentum imaging. By analyzing the momentum correlation between iodine and fluorine cations in three-fold ion coincidence events, we can distinguish the two isomers experimentally. Classical Coulomb explosion simulations are in overall agreement with the experimentally determined fragment ion kinetic energies and momentum correlations and point toward different fragmentation mechanisms and time scales. While most three-body fragmentation channels show clear evidence for sequential fragmentation on a time scale larger than the rotational period of the fragments, the breakup into iodine and fluorine cations and a third charged co-fragment appears to occur within several hundred femtoseconds.

6.
Sci Rep ; 6: 38202, 2016 12 02.
Article in English | MEDLINE | ID: mdl-27910943

ABSTRACT

An experimental route to identify and separate geometric isomers by means of coincident Coulomb explosion imaging is presented, allowing isomer-resolved photoionization studies on isomerically mixed samples. We demonstrate the technique on cis/trans 1,2-dibromoethene (C2H2Br2). The momentum correlation between the bromine ions in a three-body fragmentation process induced by bromine 3d inner-shell photoionization is used to identify the cis and trans structures of the isomers. The experimentally determined momentum correlations and the isomer-resolved fragment-ion kinetic energies are matched closely by a classical Coulomb explosion model.

7.
Materials (Basel) ; 9(5)2016 May 21.
Article in English | MEDLINE | ID: mdl-28773523

ABSTRACT

Monosulfoaluminate (Ca4Al2(SO4)(OH)12∙6H2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42- and OH-) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel's salt or Friedel's salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

8.
Materials (Basel) ; 9(12)2016 Dec 01.
Article in English | MEDLINE | ID: mdl-28774096

ABSTRACT

The understanding and control of early hydration of tricalcium silicate (C3S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C3S at an early stage of hydration. In situ C3S hydration in a wet cell, beginning with induction (~1 h) and acceleration (~4 h) periods of up to ~8 h, was studied and compared with ex situ measurements in the deceleration period after 15 h of curing. Analysis of the near-edge X-ray absorption fine structure showed that the Ca binding energy and energy splitting of C3S changed rapidly in the early age of hydration and exhibited values similar to calcium silicate hydrate (C-S-H). The formation of C-S-H nanoseeds in the C3S solution and the development of a fibrillar C-S-H morphology on the C3S surface were visualized. Following this, silicate polymerization accompanied by C-S-H precipitation produced chemical shifts in the peaks of the main Si K edge and in multiple scattering. However, the silicate polymerization process did not significantly affect the Ca binding energy of C-S-H.

9.
Nanoscale ; 7(21): 9477-86, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25874680

ABSTRACT

Phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ∼30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

10.
J Phys Chem B ; 113(32): 11160-5, 2009 Aug 13.
Article in English | MEDLINE | ID: mdl-19719265

ABSTRACT

We present a combined study by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and scanning transmission X-ray microscopy (STXM) of the successful formation of nanocomposites of polypropylene with montmorillonite by melt processing, providing a complete picture of the intercalation and exfoliation processes taking place. The nanocomposites contained 5 wt % of an organically modified montmorillonite, and different amounts of polypropylene-graft-maleic anhydride, used as a polar compatibilizer. Microscopy reveals a complex morphology, with partial intercalation/exfoliation, which depends on the concentration of compatibilizer. STXM spectromicroscopy provides direct information of the presence of different polymer components at the polymer-silicate interfaces and details on the intercalation mechanism.

11.
Chem Commun (Camb) ; (21): 2471-3, 2008 Jun 07.
Article in English | MEDLINE | ID: mdl-18491018

ABSTRACT

This communication reports the development of a TiO2-streptavidin nanoconjugate as a new biological label for X-ray bio-imaging applications; this new probe, used in conjunction with the nanogold probe, will make it possible to obtain quantitative, high-resolution information about the location of proteins using X-ray microscopy.


Subject(s)
Gold/chemistry , Metal Nanoparticles/chemistry , Molecular Probes/chemistry , Titanium/chemistry , Microscopy, Electron, Scanning Transmission/methods , Molecular Structure , Particle Size , Streptavidin/chemistry , X-Rays
12.
J Synchrotron Radiat ; 9(Pt 4): 254-7, 2002 Jul 01.
Article in English | MEDLINE | ID: mdl-12091736

ABSTRACT

The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a scanning transmission X-ray microscope (STXM). This is the first diffraction-limited scanning X-ray microscope to operate with a useful count rate on a synchrotron bend-magnet source. A simple dedicated beamline has been built covering the range of photon energy from 250 eV to 600 eV. The beamline is always available and needs little adjustment. Use of this facility is much easier than that of installations that share undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near-edge X-ray absorption spectromicroscopy with STXM count rates in excess of 1 MHz and with spectral resolution typically 1:2000, limited to about 1:5000.

SELECTION OF CITATIONS
SEARCH DETAIL
...