Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Microencapsul ; 37(3): 283-295, 2020 May.
Article in English | MEDLINE | ID: mdl-32079451

ABSTRACT

Aims: To evaluate the influence of minor differences in molecular weights of commercially available low molecular weight PLGA grades on the kinetics of doxorubicin release from the nanoparticles.Methods: Three low-molecular weight 50/50 PLGA polymers were thoroughly characterised concerning intrinsic viscosity, molecular weight (Mw), acid value, and residual monomer content. The doxorubicin-loaded nanoparticles prepared using these polymers were evaluated concerning the kinetics of drug release and hydrolytic degradation.Results: The Mw of the polymers were slightly different: 10.2, 10.3, and 4.7 kDa. The nanoparticles obtained from the polymer with Mw of 4.7 kDa exhibited considerably higher rates of drug release and polymer degradation.Conclusion: In the case of low molecular weight PLGA grades even a few kilodaltons could be important for the batch-to-batch reproducibility of the nanoformulation parameters. These results bring forward the importance of in-house characterisation of the polymers to be used for the nanoparticle preparation.


Subject(s)
Doxorubicin , Drug Carriers , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Kinetics
2.
Article in English | MEDLINE | ID: mdl-26855085

ABSTRACT

In medical and pharmaceutical applications, chitosan is used as a component of hydrogels-macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups-dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)-leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Cross-Linking Reagents/chemistry , Glutaral/analogs & derivatives , Nucleosides/chemistry , Nucleotides/chemistry , Adenosine Monophosphate/analogs & derivatives , Gels/chemistry , Glutaral/chemistry , Uridine/analogs & derivatives , Uridine Monophosphate/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...