Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Air Waste Manag Assoc ; 51(10): 1460-70, 2001 10.
Article in English | MEDLINE | ID: mdl-11686251

ABSTRACT

Under the Clean Air Act Amendments of 1990, the U.S. Environmental Protection Agency (EPA) determined that regulation of mercury emissions from coal-fired power plants is appropriate and necessary. To aid in this determination, preliminary estimates of the performance and cost of powdered activated carbon (PAC) injection-based mercury control technologies were developed. This paper presents these estimates and develops projections of costs for future applications. Cost estimates were developed using PAC to achieve a minimum of 80% mercury removal at plants using electrostatic precipitators and a minimum of 90% removal at plants using fabric filters. These estimates ranged from 0.305 to 3.783 mills/kWh. However, the higher costs were associated with a minority of plants using hot-side electrostatic precipitators (HESPs). If these costs are excluded, the estimates range from 0.305 to 1.915 mills/kWh. Cost projections developed using a composite lime-PAC sorbent for mercury removal ranged from 0.183 to 2.270 mills/kWh, with the higher costs being associated with a minority of plants that used HESPs.


Subject(s)
Air Pollution/economics , Air Pollution/prevention & control , Carbon/chemistry , Mercury/chemistry , Power Plants , Static Electricity , Coal , Costs and Cost Analysis , Equipment Design
2.
J Air Waste Manag Assoc ; 51(6): 869-77, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11417678

ABSTRACT

Mercury speciation in combustion-generated flue gas was modeled using a detailed chemical mechanism consisting of 60 reactions and 21 species. This speciation model accounts for the chlorination and oxidation of key flue-gas components, including elemental mercury (Hg0). Results indicated that the performance of the model is very sensitive to temperature. Starting with pure HCl, for lower reactor temperatures (less than approximately 630 degrees C), the model produced only trace amounts of atomic and molecular chlorine (Cl and Cl2), leading to a drastic underprediction of Hg chlorination compared with experimental data. For higher reactor temperatures, model predictions were in good accord with experimental data. For conditions that produce an excess of Cl and Cl2 relative to Hg, chlorination of Hg is determined by the competing influences of the initiation step, Hg + Cl = HgCl, and the Cl recombination reaction, 2Cl = Cl2. If the Cl recombination reaction is faster, Hg chlorination will eventually be dictated by the slower pathway Hg + Cl2 = HgCl2.


Subject(s)
Air Pollution/analysis , Mercury/chemistry , Models, Theoretical , Chlorine Compounds/chemistry , Gases , Incineration , Kinetics , Power Plants , Solubility , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...