Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 3: 473, 2012.
Article in English | MEDLINE | ID: mdl-23162512

ABSTRACT

A previous study (Kilian et al., 2003) had demonstrated that bottlenose dolphins can discriminate visual stimuli differing in numerosity. The aim of the present study was twofold: first, we sought to determine if dolphins are able to use a numerical category based on "few" vs. "many" when discriminating stimuli according to the number of their constituent patterns. Second, we aimed to extend the previously demonstrated range of numbers, thereby testing the limits of the numerical abilities of bottlenose dolphins. To this end, one adult bottlenose dolphin learned to discriminate between two simultaneously presented stimuli which varied in the number of elements they contained. After initial training, several confounding parameters were excluded to render it likely that discrimination performance indeed depended on numerosity. Subsequently, the animal was tested with new stimuli of intermediate as well as higher numbers of elements. Once discrimination had been achieved, a reversal-training on a subset of stimuli was initiated. Afterward, the subject generalized the reversal successful to new and unreinforced stimuli. Our results reveal two main findings: firstly, our data strongly suggest a magnitude and a distance effect. Thus, coding of numerical information in dolphins might follow logarithmic scaling as postulated by the Weber-Fechner law. Secondly, after learning a reversal of contingencies, the dolphin generalized the reversal successful to new and unreinforced stimuli. Thus, within the limits of a study that was conducted with a single individual, our results suggest that dolphins are able to learn and use a numerical category that is based on abstract qualities of "few" vs. "many."

2.
Behav Processes ; 68(2): 179-84, 2005 Feb 28.
Article in English | MEDLINE | ID: mdl-15686828

ABSTRACT

In a two-choice discrimination paradigm, a bottlenose dolphin discriminated relational dimensions between visual numerosity stimuli under monocular viewing conditions. After prior binocular acquisition of the task, two monocular test series with different number stimuli were conducted. In accordance with recent studies on visual lateralization in the bottlenose dolphin, our results revealed an overall advantage of the right visual field. Due to the complete decussation of the optic nerve fibers, this suggests a specialization of the left hemisphere for analysing relational features between stimuli as required in tests for numerical abilities. These processes are typically right hemisphere-based in other mammals (including humans) and birds. The present data provide further evidence for a general right visual field advantage in bottlenose dolphins for visual information processing. It is thus assumed that dolphins possess a unique functional architecture of their cerebral asymmetries.


Subject(s)
Cognition , Discrimination Learning , Dolphins/psychology , Mathematics , Animals , Functional Laterality , Male , Optic Nerve , Task Performance and Analysis , Visual Perception
3.
Learn Behav ; 31(2): 133-42, 2003 May.
Article in English | MEDLINE | ID: mdl-12882372

ABSTRACT

A bottlenose dolphin was trained to discriminate two simultaneously presented stimuli differing in numerosity (defined by the number of constituent elements). After responding correctly to stimuli consisting of three-dimensional objects, the dolphin transferred to two-dimensional stimuli. Initially, a variety of stimulus parameters covaried with the numerosity feature. By systematically controlling for these stimulus parameters, it was demonstrated that some of these attributes, such as element configuration and overall brightness, affected the animal's discrimination performance. However, after all the confounding parameters were under control, the dolphin was able to discriminate the stimuli exclusively on the basis of the numerosity feature. The animal then achieved a successful transfer to novel numerosities, both intervening numerosities and numerosities outside the former range. These findings provide substantial evidence that the dolphin could base his behavior on the numerosity of a set independently of its other attributes and that he represented ordinal relations among numerosities.


Subject(s)
Discrimination Learning , Dolphins/psychology , Pattern Recognition, Visual , Animals , Cognition , Male , Mathematics , Mental Processes , Problem Solving , Transfer, Psychology
SELECTION OF CITATIONS
SEARCH DETAIL
...