Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mult Scler ; 28(13): 2010-2019, 2022 11.
Article in English | MEDLINE | ID: mdl-36189828

ABSTRACT

BACKGROUND: Synaptic and neuronal loss contribute to network dysfunction and disability in multiple sclerosis (MS). However, it is unknown whether excitatory or inhibitory synapses and neurons are more vulnerable and how their losses impact network functioning. OBJECTIVE: To quantify excitatory and inhibitory synapses and neurons and to investigate how synaptic loss affects network functioning through computational modeling. METHODS: Using immunofluorescent staining and confocal microscopy, densities of glutamatergic and GABAergic synapses and neurons were compared between post-mortem MS and non-neurological control cases. Then, a corticothalamic biophysical model was employed to study how MS-induced excitatory and inhibitory synaptic loss affect network functioning. RESULTS: In layer VI of normal-appearing MS cortex, excitatory and inhibitory synaptic densities were significantly lower than controls (reductions up to 14.9%), but demyelinated cortex showed larger losses of inhibitory synapses (29%). In our computational model, reducing inhibitory synapses impacted the network most, leading to a disinhibitory increase in neuronal activity and connectivity. CONCLUSION: In MS, excitatory and inhibitory synaptic losses were observed, predominantly for inhibitory synapses in demyelinated cortex. Inhibitory synaptic loss affected network functioning most, leading to increased neuronal activity and connectivity. As network disinhibition relates to cognitive impairment, inhibitory synaptic loss seems particularly relevant in MS.


Subject(s)
Multiple Sclerosis , Cerebral Cortex , Humans , Neurons , Synapses
2.
Acta Neuropathol ; 141(6): 881-899, 2021 06.
Article in English | MEDLINE | ID: mdl-33779783

ABSTRACT

Meningeal inflammation strongly associates with demyelination and neuronal loss in the underlying cortex of progressive MS patients, thereby contributing significantly to clinical disability. However, the pathological mechanisms of meningeal inflammation-induced cortical pathology are still largely elusive. By extensive analysis of cortical microglia in post-mortem progressive MS tissue, we identified cortical areas with two MS-specific microglial populations, termed MS1 and MS2 cortex. The microglial population in MS1 cortex was characterized by a higher density and increased expression of the activation markers HLA class II and CD68, whereas microglia in MS2 cortex showed increased morphological complexity and loss of P2Y12 and TMEM119 expression. Interestingly, both populations associated with inflammation of the overlying meninges and were time-dependently replicated in an in vivo rat model for progressive MS-like chronic meningeal inflammation. In this recently developed animal model, cortical microglia at 1-month post-induction of experimental meningeal inflammation resembled microglia in MS1 cortex, and microglia at 2 months post-induction acquired a MS2-like phenotype. Furthermore, we observed that MS1 microglia in both MS cortex and the animal model were found closely apposing neuronal cell bodies and to mediate pre-synaptic displacement and phagocytosis, which coincided with a relative sparing of neurons. In contrast, microglia in MS2 cortex were not involved in these synaptic alterations, but instead associated with substantial neuronal loss. Taken together, our results show that in response to meningeal inflammation, microglia acquire two distinct phenotypes that differentially associate with neurodegeneration in the progressive MS cortex. Furthermore, our in vivo data suggests that microglia initially protect neurons from meningeal inflammation-induced cell death by removing pre-synapses from the neuronal soma, but eventually lose these protective properties contributing to neuronal loss.


Subject(s)
Cerebral Cortex/pathology , Meninges/pathology , Microglia/pathology , Multiple Sclerosis/pathology , Neurodegenerative Diseases/pathology , Neuroinflammatory Diseases/pathology , Neurons/pathology , Adult , Aged , Animals , Cell Death , Demyelinating Diseases/immunology , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Humans , Meninges/immunology , Microglia/classification , Microglia/immunology , Microglia/metabolism , Middle Aged , Multiple Sclerosis/immunology , Neurodegenerative Diseases/immunology , Phenotype , Rats
4.
Mult Scler ; 27(3): 380-390, 2021 03.
Article in English | MEDLINE | ID: mdl-32390507

ABSTRACT

BACKGROUND: Neuroaxonal degeneration is one of the hallmarks of clinical deterioration in progressive multiple sclerosis (PMS). OBJECTIVE: To elucidate the association between neuroaxonal degeneration and both local cortical and connected white matter (WM) tract pathology in PMS. METHODS: Post-mortem in situ 3T magnetic resonance imaging (MRI) and cortical tissue blocks were collected from 16 PMS donors and 10 controls. Cortical neuroaxonal, myelin, and microglia densities were quantified histopathologically. From diffusion tensor MRI, fractional anisotropy, axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were quantified in normal-appearing white matter (NAWM) and white matter lesions (WML) of WM tracts connected to dissected cortical regions. Between-group differences and within-group associations were investigated through linear mixed models. RESULTS: The PMS donors displayed significant axonal loss in both demyelinated and normal-appearing (NA) cortices (p < 0.001 and p = 0.02) compared with controls. In PMS, cortical axonal density was associated with WML MD and AD (p = 0.003; p = 0.02, respectively), and NAWM MD and AD (p = 0.04; p = 0.049, respectively). NAWM AD and WML AD explained 12.6% and 22.6%, respectively, of axonal density variance in NA cortex. Additional axonal loss in demyelinated cortex was associated with cortical demyelination severity (p = 0.002), explaining 34.4% of axonal loss variance. CONCLUSION: Reduced integrity of connected WM tracts and cortical demyelination both contribute to cortical axonal loss in PMS.


Subject(s)
Multiple Sclerosis , White Matter , Diffusion Tensor Imaging , Gray Matter , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , White Matter/diagnostic imaging
5.
Brain ; 142(7): 1921-1937, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31168614

ABSTRACT

Cortical microstructural abnormalities are associated with clinical and cognitive deterioration in multiple sclerosis. Using diffusion tensor MRI, a higher fractional anisotropy has been found in cortical lesions versus normal-appearing cortex in multiple sclerosis. The pathological substrates of this finding have yet to be definitively elucidated. By performing a combined post-mortem diffusion tensor MRI and histopathology study, we aimed to define the histopathological substrates of diffusivity abnormalities in multiple sclerosis cortex. Sixteen subjects with multiple sclerosis and 10 age- and sex-matched non-neurological control donors underwent post-mortem in situ at 3 T MRI, followed by brain dissection. One hundred and ten paraffin-embedded tissue blocks (54 from multiple sclerosis patients, 56 from non-neurological controls) were matched to the diffusion tensor sequence to obtain regional diffusivity measures. Using immunohistochemistry and silver staining, cortical density of myelin, microglia, astrocytes and axons, and density and volume of neurons and glial cells were evaluated. Correlates of diffusivity abnormalities with histological markers were assessed through linear mixed-effects models. Cortical lesions (77% subpial) were found in 27/54 (50%) multiple sclerosis cortical regions. Multiple sclerosis normal-appearing cortex had a significantly lower fractional anisotropy compared to cortex from non-neurological controls (P = 0.047), whereas fractional anisotropy in demyelinated cortex was significantly higher than in multiple sclerosis normal-appearing cortex (P = 0.012) but not different from non-neurological control cortex (P = 0.420). Compared to non-neurological control cortex, both multiple sclerosis normal-appearing and demyelinated cortices showed a lower density of axons perpendicular to the cortical surface (P = 0.012 for both) and of total axons (parallel and perpendicular to cortical surface) (P = 0.028 and 0.012). In multiple sclerosis, demyelinated cortex had a lower density of myelin (P = 0.004), parallel (P = 0.018) and total axons (P = 0.029) versus normal-appearing cortex. Regarding the pathological substrate, in non-neurological controls, cortical fractional anisotropy was positively associated with density of perpendicular, parallel, and total axons (P = 0.031 for all). In multiple sclerosis, normal-appearing cortex fractional anisotropy was positively associated with perpendicular and total axon density (P = 0.031 for both), while associations with myelin, glial and total cells and parallel axons did not survive multiple comparison correction. Demyelinated cortex fractional anisotropy was positively associated with density of neurons, and total cells and negatively with microglia density, without surviving multiple comparison correction. Our results suggest that a reduction of perpendicular axons in normal-appearing cortex and of both perpendicular and parallel axons in demyelinated cortex may underlie the substrate influencing cortical microstructural coherence and being responsible for the different patterns of fractional anisotropy changes occurring in multiple sclerosis cortex.


Subject(s)
Axons/pathology , Cerebral Cortex/pathology , Multiple Sclerosis/pathology , Nerve Degeneration/pathology , Aged , Anisotropy , Case-Control Studies , Diffusion Tensor Imaging , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neuroglia/pathology
6.
J Neuropathol Exp Neurol ; 78(6): 480-491, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31100147

ABSTRACT

Cognitive dysfunction occurs frequently in multiple sclerosis (MS). Research suggests that hippocampal lesions and GABAergic neurotransmitter changes contribute to cognitive dysfunction. In the present study, we aim to determine the cellular changes in GABAergic expression in MS hippocampus related to inflammation and demyelination. To this end, the presence and inflammatory activity of demyelinating lesions was determined by immunohistochemistry in human postmortem hippocampal tissue of 15 MS patients and 9 control subjects. Subsequently, GABAergic cells were visualized using parvalbumin (PV) and glutamate acid decarboxylase 67 (GAD67) markers. Fluorescent colabeling was performed of GAD67 with neuronal nuclei, PV, astrocytic glial fibrillary acidic protein, or vesicular GABA transporter. We observed increased GAD67-positive (GAD67+) neuron and synapse numbers in the CA1 of MS patients with active hippocampal lesions, not due to neurogenesis. The number and size of PV-positive neurons remained unchanged. GAD67+ astrocytes were more numerous in hippocampal white matter than grey matter lesions. Additionally, in MS patients with active hippocampal lesions GAD67+ astrocyte surface area was increased. Disturbed cognition was most prevalent in MS patients with active hippocampal lesions. Summarizing, increased GAD67 immunoreactivity occurs in neurons and astrocytes and relates to hippocampal inflammation and possibly disturbed cognition in MS.


Subject(s)
Astrocytes/metabolism , Hippocampus/metabolism , Multiple Sclerosis/metabolism , Neurons/metabolism , gamma-Aminobutyric Acid/biosynthesis , Adult , Aged , Aged, 80 and over , Demyelinating Diseases/pathology , Female , Glutamate Decarboxylase/biosynthesis , Glutamate Decarboxylase/genetics , Gray Matter/metabolism , Hippocampus/pathology , Humans , Immunohistochemistry , Inflammation/pathology , Interneurons/metabolism , Male , Middle Aged , Multiple Sclerosis/pathology , White Matter/metabolism , gamma-Aminobutyric Acid/immunology
7.
J Neurol ; 266(1): 212-222, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30467603

ABSTRACT

OBJECTIVE: Abnormalities in segregative and integrative properties of brain networks have been observed in multiple sclerosis (MS) and are related to clinical functioning. This study aims to investigate the micro-scale correlates of macro-scale network measures of segregation and integration in MS. METHODS: Eight MS patients underwent post-mortem in situ whole-brain diffusion tensor (DT) imaging and subsequent brain dissection. Macro-scale structural network topology was derived from DT data using graph theory. Clustering coefficient and mean white matter (WM) fiber length were measures of nodal segregation and integration. Thirty-three tissue blocks were collected from five cortical brain regions. Using immunohistochemistry micro-scale tissue properties were evaluated, including, neuronal size, neuronal density, axonal density and total cell density. Nodal network properties and tissue properties were correlated. RESULTS: A negative correlation between clustering coefficient and WM fiber length was found. Higher clustering coefficient was associated with smaller neuronal size and lower axonal density, and vice versa for fiber length. Higher whole-brain WM lesion load was associated with higher whole-brain clustering, shorter whole-brain fiber length, lower neuronal size and axonal density. CONCLUSION: Structural network properties on MRI associate with neuronal size and axonal density, suggesting that macro-scale network measures may grasp cortical neuroaxonal degeneration in MS.


Subject(s)
Brain/diagnostic imaging , Brain/pathology , Diffusion Tensor Imaging , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Neurons/pathology , Aged , Aged, 80 and over , Cell Count , Cell Size , Female , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Male , Middle Aged , Neural Pathways/diagnostic imaging , Neural Pathways/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...