Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
PLoS One ; 19(5): e0299722, 2024.
Article in English | MEDLINE | ID: mdl-38809841

ABSTRACT

BACKGROUND: A low technology emanator device for slowly releasing vapour of the volatile pyrethroid transfluthrin was recently developed in Tanzania that provides robust protection against night biting Anopheles and Culex vectors of malaria and filariasis for several months. Here these same emanator devices were assessed in Dar es Salaam city, as a means of protection against outdoor-biting Aedes (Stegomia) aegypti, the most important vector of human arboviruses worldwide, in parallel with similar studies in Haiti and Brazil. METHODS: A series of entomological experiments were conducted under field and semi-field conditions, to evaluate whether transfluthrin emanators protect against wild Ae. aegypti, and also compare the transfluthrin responsiveness of Ae. aegypti originating from wild-caught eggs to established pyrethroid-susceptible Ae. aegypti and Anopheles gambiae colonies. Preliminary measurements of transfluthrin vapour concentration in air samples collected near treated emanators were conducted by gas chromatography-mass spectrometry. RESULTS: Two full field experiments with four different emanator designs and three different transfluthrin formulations consistently indicated negligible reduction of human landing rates by wild Ae. aegypti. Under semi-field conditions in large cages, 50 to 60% reductions of landing rates were observed, regardless of which transfluthrin dose, capture method, emanator placement position, or source of mosquitoes (mildly pyrethroid resistant wild caught Ae. aegypti or pyrethroid-susceptible colonies of Ae. aegypti and An. gambiae) was used. Air samples collected immediately downwind from an emanator treated with the highest transfluthrin dose (15g), contained 12 to 19 µg/m3 transfluthrin vapour. CONCLUSIONS: It appears unlikely that the moderate levels of pyrethroid resistance observed in wild Ae. aegypti can explain the modest-to-undetectable levels of protection exhibited. While potential inhalation exposure could be of concern for the highest (15g) dose evaluated, 3g of transfluthrin appears sufficient to achieve the modest levels of protection that were demonstrated entomologically. While the generally low levels of protection against Aedes reported here from Tanzania, and from similar entomological studies in Haiti and Brazil, are discouraging, complementary social science studies in Haiti and Brazil suggest end-users perceive valuable levels of protection against mosquitoes. It therefore remains unclear whether transfluthrin emanators have potential for protecting against Aedes vectors of important human arboviruses.


Subject(s)
Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Tanzania , Aedes/drug effects , Cyclopropanes/pharmacology , Mosquito Control/methods , Insecticides/pharmacology , Mosquito Vectors/drug effects , Humans , Anopheles/drug effects , Insect Bites and Stings/prevention & control , Pyrethrins
2.
PLoS One ; 19(5): e0298919, 2024.
Article in English | MEDLINE | ID: mdl-38805442

ABSTRACT

BACKGROUND: A simple treated fabric device for passively emanating the volatile pyrethroid transfluthrin was recently developed in Tanzania that protected against nocturnal Anopheles and Culex mosquitoes for several months. Here these transfluthrin emanators were assessed in Port-au-Prince, Haiti against outdoor-biting Aedes. METHODS: Transfluthrin emanators were distributed to participating households in poor-to-middle class urban neighbourhoods and evaluated once every two months in terms of their effects on human landing rates of wild Aedes populations. A series of three such entomological assessment experiments were conducted, to examine the influence of changing weather conditions, various transfluthrin formulations and emanator placement on protective efficacy measurements. Laboratory experiments assessed resistance of local Aedes aegypti to transfluthrin and deltamethrin, and the irritancy and repellency of the transfluthrin-treated fabric used in the field. RESULTS: Across all three entomological field assessments, little evidence of protection against wild Ae. aegypti was observed, regardless of weather conditions, transfluthrin formulation or emanator placement: A generalized linear mixed model fitted to the pooled data from all three assessment rounds (921 females caught over 5129 hours) estimated a relative landing rate [95% Confidence interval] of 0.87 [0.73, 1.04] for users of treated versus untreated emanators (P = 0.1241). Wild Ae. aegypti in this setting were clearly resistant to transfluthrin when compared to a fully susceptible colony. CONCLUSIONS: Transfluthrin emanators had little if any apparent effect upon Aedes landing rates by wild Ae. aegypti in urban Haiti, and similar results have been obtained by comparable studies in Tanzania, Brazil and Peru. In stark contrast, however, parallel sociological assessments of perspectives among these same end-users in urban Haitian communities indicate strong satisfaction in terms of perceived protection against mosquitoes. It remains unclear why the results obtained from these complementary entomological and sociological assessments in Haiti differ so much, as do those from a similar set of studies in Brazil. It is encouraging, however, that similar contrasts between the entomological and epidemiological results of a recent large-scale assessment of another transfluthrin emanator product in Peru, which indicate they provide useful protection against Aedes-borne arboviral infections, despite apparently providing only modest protection against Aedes mosquito bites.


Subject(s)
Aedes , Cyclopropanes , Fluorobenzenes , Insecticides , Mosquito Control , Animals , Aedes/drug effects , Cyclopropanes/pharmacology , Haiti , Mosquito Control/methods , Humans , Insecticides/pharmacology , Female , Pyrethrins/pharmacology , Mosquito Vectors/drug effects , Insecticide Resistance , Insect Bites and Stings/prevention & control , Nitriles/pharmacology , Family Characteristics , Insect Repellents/pharmacology
4.
Malar J ; 22(1): 238, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587487

ABSTRACT

BACKGROUND: The use of insecticide-treated nets for malaria control has been associated with shifts in mosquito vector feeding behaviour including earlier and outdoor biting on humans. The relative contribution of phenotypic plasticity and heritability to these behavioural shifts is unknown. Elucidation of the mechanisms behind these shifts is crucial for anticipating impacts on vector control. METHODS: A novel portable semi-field system (PSFS) was used to experimentally measure heritability of biting time in the malaria vector Anopheles arabiensis in Tanzania. Wild An. arabiensis from hourly collections using the human landing catch (HLC) method were grouped into one of 3 categories based on their time of capture: early (18:00-21:00), mid (22:00-04:00), and late (05:00-07:00) biting, and placed in separate holding cages. Mosquitoes were then provided with a blood meal for egg production and formation of first filial generation (F1). The F1 generation of each biting time phenotype category was reared separately, and blood fed at the same time as their mothers were captured host-seeking. The resultant eggs were used to generate the F2 generation for use in heritability assays. Heritability was assessed by releasing F2 An. arabiensis into the PSFS, recording their biting time during a human landing catch and comparing it to that of their F0 grandmothers. RESULTS: In PSFS assays, the biting time of F2 offspring (early: 18:00-21:00, mid: 22:00-04:00 or late: 05:00-07:00) was significantly positively associated with that of their wild-caught F0 grandmothers, corresponding to an estimated heritability of 0.110 (95% CI 0.003, 0.208). F2 from early-biting F0 were more likely to bite early than F2 from mid or late-biting F0. Similarly, the probability of biting late was higher in F2 derived from mid and late-biting F0 than from early-biting F0. CONCLUSIONS: Despite modest heritability, our results suggest that some of the variation in biting time is attributable to additive genetic variation. Selection can, therefore, act efficiently on mosquito biting times, highlighting the need for control methods that target early and outdoor biting mosquitoes.


Subject(s)
Anopheles , Malaria , Humans , Animals , Anopheles/genetics , Mosquito Vectors/genetics , Malaria/prevention & control , Feeding Behavior , Adaptation, Physiological
5.
Zoo Biol ; 42(5): 605-615, 2023.
Article in English | MEDLINE | ID: mdl-37189254

ABSTRACT

Wild lions, especially the males, spend much of their time performing various territorial advertising behaviors, the most obvious of which are loud vocalizations that can be heard several kilometers away. This study investigated whether a captive pride of three Asiatic lions at Fota Wildlife Park in Ireland exhibited typical patterns of territorial vocalizations and associated behaviors. A total of 705 bouts of territorial vocalization were noted over 1 month of near-continuous audio recording in the middle of winter in 2020. Also, complementary visual observations were performed during regular daytime visits to collect audio data and maintain recording equipment. These captive lions exhibited generally similar territorial urine spraying, scent rubbing and vocalization behaviors to their wild counterparts but differed in that they primarily vocalized during daylight hours, including afternoons and late mornings. While most roaring occurred during the day there was also a brief peak just before dawn, between 07:00 and 08:00, and another after dusk, between 17:00 and 18:00. Vocalization activity tailed off after 22:00 and became infrequent over the remaining hours of darkness. Although this contrasts starkly with the predominantly nocturnal activity patterns of wild lions, it is consistent with some reports from some other captive settings. Although the underlying reasons for this habit of roaring throughout the day remain unclear, it is fortuitous because the spectacular territorial vocalizations of these captive lions enrich visitor experiences and may hopefully stimulate interest in travel to the low and middle-income countries where tourist income is essential to sustain the conservation areas they and many other species depend on.


Subject(s)
Lions , Male , Animals , Animals, Zoo , Animals, Wild
7.
Malar J ; 21(1): 318, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335363

ABSTRACT

BACKGROUND: Insecticidal mosquito-proof netting screens could combine the best features of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), the two most important front line vector control interventions in Africa today, and also overcome the most important limitations of these methods. This study engaged members of a rural Tanzanian community in developing and evaluating simple, affordable and scalable procedures for installing readily available screening materials on eave gaps and windows of their own houses, and then treating those screens with a widely used IRS formulation of the organophosphate insecticide pirimiphos-methyl (PM). METHODS: A cohort of 54 households recruited upon consent, following which the structural features and occupant demographics of their houses were surveyed. Indoor mosquito densities were surveyed longitudinally, for approximately 3 months before and over 5 months after participatory house modification and screening using locally available materials. Each house was randomly assigned to one of three study arms: (1) No screens installed until the end of the study (negative control), (2) untreated screens installed, and (3) screened installed and then treated with PM, the insecticidal activity of which was subsequently assessed using standard cone assays. RESULTS: Almost all (52) recruited households participated until the end, at which point all houses had been successfully screened. In most cases, screening was only installed after making enabling structural modifications that were accepted by the enrolled households. Compared to unscreened houses, houses with either treated or untreated screens both almost entirely excluded Anopheles arabiensis (Relative reduction (RR) ≥ 98%, P < < 0.0001), the most abundant local malaria vector. However, screens were far less effective against Culex quinquefasciatus (RR ≤ 46%, P < < 0.0001), a non-malaria vector causing considerable biting nuisance, regardless of their treatment status. While PM did not augment household level protection by screens against either mosquito species (P = 0.676 and 0.831, respectively), 8 months after treatment it still caused 73% and 89% mortality among susceptible insectary-reared Anopheles gambiae following exposures of 3 and 30 min, respectively. CONCLUSIONS: Participatory approaches to mosquito proofing houses may be acceptable and effective, and installed screens may be suitable targets for residual insecticide treatments.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Malaria , Humans , Animals , Mosquito Control/methods , Housing , Tanzania , Mosquito Vectors , Malaria/prevention & control
8.
Parasit Vectors ; 14(1): 384, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344438

ABSTRACT

The impacts and limitations of personal protection measures against exposure to vectors of malaria and other mosquito-borne pathogens depend on behavioural interactions between humans and mosquitoes. Therefore, understanding where and when they overlap in time and space is critical. Commonly used approaches for calculating behaviour-adjusted estimates of human exposure distribution deliberately use soft classification of where and when people spend their time, to yield nuanced and representative distributions of mean exposure to mosquito bites across entire human populations or population groups. However, these weighted averages rely on aggregating individual-level data to obtain mean human population distributions across the relevant behavioural classes for each time increment, so they cannot be used to test for variation between individuals. Also, these summary outcomes are quite complex functions of the disaggregated data, so they do not match the standard binomial or count distributions to which routine off-the-shelf statistical tools may be confidently applied. Fortunately, the proportions of exposure to mosquito bites that occur while indoors or asleep can also be estimated in a simple binomial fashion, based on hard classification of human location over a given time increment, as being either completely indoors or completely outdoors. This simplified binomial approach allows convenient analysis with standard off-the-shelf logistic regression tools, to statistically assess variations between individual humans, human population subsets or vector species. Such simplified binomial estimates of behavioural interactions between humans and mosquitoes should be more widely used for estimating confidence intervals around means of these indicators, comparing different vector populations and human population groups, and assessing the influence of individual behaviour on exposure patterns and infection risk. Also, standard sample size estimation techniques may be readily used to estimate necessary minimum experimental scales and data collection targets for field studies recording these indicators as key outcomes. Sample size calculations for field studies should allow for natural geographic variation and seasonality, taking advantage of rolling cross-sectional designs to survey and re-survey large numbers of separate study locations in a logistically feasible manner.


Subject(s)
Malaria/transmission , Mosquito Vectors/physiology , Animals , Binomial Distribution , Demography , Humans , Insect Bites and Stings/etiology , Insect Bites and Stings/prevention & control , Malaria/prevention & control , Mosquito Vectors/parasitology , Time Factors
9.
Infect Dis Model ; 6: 474-489, 2021.
Article in English | MEDLINE | ID: mdl-33644500

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 1 (SARS-CoV-1) infections almost always caused overt symptoms, so effective case and contact management enabled its effective eradication within months. However, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) usually causes only mild symptoms, so transmission chains may grow to include several individuals before at least one index case becomes ill enough to self-report for diagnosis and care. Here, simple mathematical models were developed to evaluate the implications of delayed index case detection for retrospective contact tracing and management responses. Specifically, these simulations illustrate how: (1) Contact tracing and management may effectively contain most but not all large SARS-CoV-2 clusters arising at foci with high reproduction numbers because rapidly expanding transmission chains ensure at least one overtly symptomatic index case occurs within two viral generations a week or less apart. (2) However, lower reproduction numbers give rise to thinner transmission chains extending through longer sequences of non-reporting asymptomatic and paucisymptomatic individuals, often spanning three or more viral generations (≥2 weeks of transmission) before an overtly symptomatic index case occurs. (3) Consequently, it is not always possible to fully trace and contain such long, thin transmission chains, so the community transmission they give rise to is underrepresented in surveillance data. (4) Wherever surveillance systems are weak and/or transmission proceeds within population groups with lower rates of overt clinical symptoms and/or self-reporting, case and contact management effectiveness may be more severely limited, even at the higher reproduction numbers associated with larger outbreaks. (5) Because passive surveillance platforms may be especially slow to detect the thinner transmission chains that occur at low reproduction numbers, establishing satisfactory confidence of elimination may require that no confirmed cases are detected for two full months, throughout which presumptive preventative measures must be maintained to ensure complete collapse of undetected residual transmission. (6) Greater scope exists for overcoming these limitations by enhancing field surveillance for new suspected cases than by improving diagnostic test sensitivity. (7) While population-wide active surveillance may enable complete traceability and containment, this goal may also be achievable through enhanced passive surveillance for paucisymptomatic infections, combining readily accessible decentralized testing with population hypersensitization to self-reporting with mild symptoms. Containment and elimination of SARS-CoV-2 will rely far more upon presumptive, population-wide prevention measures than was necessary for SARS-CoV-1, necessitating greater ambition, political will, investment, public support, persistence and patience. Nevertheless, case and contact management may be invaluable for at least partially containing SARS-CoV-2 transmission, especially larger outbreaks, but only if enabled by sufficiently sensitive surveillance. Furthermore, consistently complete transmission chain containment may be enabled by focally enhanced surveillance around manageably small numbers of outbreaks in the end stages of successful elimination campaigns, so that their endpoints may be accelerated and sustained.

10.
PLoS One ; 16(3): e0247803, 2021.
Article in English | MEDLINE | ID: mdl-33662005

ABSTRACT

Lack of tools for detailed, real-time observation of mosquito behavior with high spatio-temporal resolution limits progress towards improved malaria vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect positioned over rice fields outside a Tanzanian village. A quarter of a million in situ insect observations were classified, and several insect taxa were identified based on their modulation signatures. We observed distinct range distributions of male and female mosquitoes in relation to the village periphery, and spatio-temporal behavioral features, such as swarming. Furthermore, we observed that the spatial distributions of males and females change independently of each other during the day, and were able to estimate the daily dispersal of mosquitoes towards and away from the village. The findings of this study demonstrate how lidar-based monitoring could dramatically improve our understanding of malaria vector ecology and control options.


Subject(s)
Anopheles/physiology , Environmental Monitoring/methods , Geographic Information Systems/standards , Malaria/diagnosis , Mosquito Vectors/parasitology , Rural Population/statistics & numerical data , Africa/epidemiology , Animals , Female , Malaria/epidemiology , Malaria/prevention & control , Malaria/transmission , Male
11.
Biodivers Conserv ; 29(11-12): 3095-3102, 2020.
Article in English | MEDLINE | ID: mdl-32836920

ABSTRACT

Outbreaks of emerging infectious diseases are occurring with increasing frequency and consequences, including wildlife diseases and zoonoses. Those have potentially long-lasting effects on human and wildlife populations, with inevitable direct and indirect effects on ecosystems. The intensifying emergence of infectious pathogens has many underlying reasons, all driven by the growing anthropogenic impact on nature. Intensifying pathogen emergence can be attributed to climate change, biodiversity loss, habitat degradation, and an increasing rate of wildlife-human contacts. All of these are caused by synergies between persisting intense poverty and a growing human population. Improved global management of the human-driven biological degradation and international dispersal processes that exacerbate those pandemic threats are now long overdue. It is vital that we act decisively in the aftermath of the COVID-19 crisis to radically change how we collectively manage the planet as a whole.

12.
Infect Dis Model ; 5: 362-365, 2020.
Article in English | MEDLINE | ID: mdl-32666004

ABSTRACT

Countries with ambitious national strategies to crush the curve of their Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) epidemic trajectories include China, Korea, Japan, Taiwan, New Zealand and Australia. However, the United States and many hard-hit European countries, like Ireland, Italy, Spain, France and the United Kingdom, currently appear content to merely flatten the curve of their epidemic trajectories so that transmission persists at rates their critical care services can cope with. Here I present a simple set of arithmetic modelling analyses that are accessible to non-specialists and explain why preferable crush the curve strategies, to eliminate transmission within months, would require only a modest amount of additional containment effort relative to the tipping point targeted by flatten the curve strategies, which allow epidemics to persist at supposedly steady, manageable levels for years, decades or even indefinitely.

13.
Malar J ; 19(1): 243, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32660476

ABSTRACT

An amendment to this paper has been published and can be accessed via the original article.

14.
Infect Dis Model ; 5: 442-458, 2020.
Article in English | MEDLINE | ID: mdl-32691016

ABSTRACT

As every country in the world struggles with the ongoing COVID-19 pandemic, it is essential that as many people as possible understand the epidemic containment, elimination and exclusion strategies required to tackle it. Simplified arithmetic models of COVID-19 transmission, control and elimination are presented in user-friendly Shiny and Excel formats that allow non-specialists to explore, query, critique and understand the containment decisions facing their country and the world at large. Although the predictive model is broadly applicable, the simulations presented are based on parameter values representative of the United Republic of Tanzania, which is still early enough in its epidemic cycle and response to avert a national catastrophe. The predictions of these models illustrate (1) why ambitious lock-down interventions to crush the curve represent the only realistic way for individual countries to contain their national-level epidemics before they turn into outright catastrophes, (2) why these need to be implemented so early, so stringently and for such extended periods, (3) why high prevalence of other pathogens causing similar symptoms to mild COVID-19 precludes the use of contact tracing as a substitute for lock down interventions to contain and eliminate epidemics, (4) why partial containment strategies intended to merely flatten the curve, by maintaining epidemics at manageably low levels, are grossly unrealistic, and (5) why local elimination may only be sustained after lock down ends if imported cases are comprehensively excluded, so international co-operation to conditionally re-open trade and travel between countries certified as free of COVID-19 represents the best strategy for motivating progress towards pandemic eradication at global level. The three sequential goals that every country needs to emphatically embrace are contain, eliminate and exclude. As recently emphasized by the World Health Organization, success will require widespread genuine national unity and unprecedented global solidarity.

16.
Malar J ; 19(1): 207, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546166

ABSTRACT

BACKGROUND: Effective targeting and evaluation of interventions that protect against adult malaria vectors requires an understanding of how gaps in personal protection arise. An improved understanding of human and mosquito behaviour, and how they overlap in time and space, is critical to estimating the impact of insecticide-treated nets (ITNs) and determining when and where supplemental personal protection tools are needed. Methods for weighting estimates of human exposure to biting Anopheles mosquitoes according to where people spend their time were first developed over half a century ago. However, crude indoor and outdoor biting rates are still commonly interpreted as indicative of human-vector contact patterns without any adjustment for human behaviour or the personal protection effects of ITNs. MAIN TEXT: A small number of human behavioural variables capturing the distribution of human populations indoors and outdoors, whether they are awake or asleep, and if and when they use an ITN over the course of the night, can enable a more accurate representation of human biting exposure patterns. However, to date no clear guidance is available on what data should be collected, what indicators should be reported, or how they should be calculated. This article presents an integrated perspective on relevant indicators of human-vector interactions, the critical entomological and human behavioural data elements required to quantify human-vector interactions, and recommendations for collecting and analysing such data. CONCLUSIONS: If collected and used consistently, this information can contribute to an improved understanding of how malaria transmission persists in the context of current intervention tools, how exposure patterns may change as new vector control tools are introduced, and the potential impact and limitations of these tools. This article is intended to consolidate understanding around work on this topic to date and provide a consistent framework for building upon it. Additional work is needed to address remaining questions, including further development and validation of methods for entomological and human behavioural data collection and analysis.


Subject(s)
Anopheles/physiology , Data Collection/methods , Mosquito Vectors/physiology , Parasitology/methods , Animals , Humans , Malaria , Mosquito Control
17.
Sci Adv ; 6(20): eaay5487, 2020 05.
Article in English | MEDLINE | ID: mdl-32426490

ABSTRACT

Yearly, a quarter billion people are infected and a half a million killed by the mosquito-borne disease malaria. Lack of real-time observational tools for continuously assessing the unperturbed mosquito flight activity in situ limits progress toward improved vector control. We deployed a high-resolution entomological lidar to monitor a half-kilometer static transect adjacent to a Tanzanian village. We evaluated one-third million insect observations during five nights, four days, and one annular solar eclipse. We demonstrate in situ lidar classification of several insect families and their sexes based on their modulation signatures. We were able to compare the fine-scale spatiotemporal activity patterns of malaria vectors during ordinary days and an eclipse to disentangle phototactic activity patterns from the circadian mechanism. We observed an increased insect activity during the eclipse attributable to mosquitoes. These unprecedented findings demonstrate how lidar-based monitoring of distinct mosquito activities could advance our understanding of vector ecology.


Subject(s)
Anopheles , Malaria , Animals , Humans , Mosquito Vectors
19.
Malar J ; 19(1): 109, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-32156280

ABSTRACT

BACKGROUND: Residents of malaria-endemic communities spend several hours outdoors performing different activities, e.g. cooking, story-telling or eating, thereby exposing themselves to potentially-infectious mosquitoes. This compromises effectiveness of indoor interventions, notably long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS). This study characterized common peri-domestic spaces in rural south-eastern Tanzania, and assessed protective efficacy against mosquitoes of hessian fabric mats and ribbons treated with the spatial repellent, transfluthrin, and fitted to chairs and outdoor kitchens, respectively. METHODS: Two hundred households were surveyed, and their most-used peri-domestic spaces physically characterized. Protective efficacies of locally-made transfluthrin-emanating chairs and hessian ribbons were tested in outdoor environments of 28 households in dry and wet seasons, using volunteer-occupied exposure-free double net traps. CDC light traps were used to estimate host-seeking mosquito densities within open-structure outdoor kitchens. Field-collected Anopheles arabiensis and Anopheles funestus mosquitoes were exposed underneath the chairs to estimate 24 h-mortality. Finally, The World Health Organization insecticide susceptibility tests were conducted on wild-caught Anopheles from the villages. RESULTS: Approximately half (52%) of houses had verandas. Aside from these verandas, most houses also had peri-domestic spaces where residents stayed most times (67% of houses with verandas and 94% of non-veranda houses). Two-thirds of these spaces were sited under trees, and only one third (34.4%) were built-up. The outdoor structures were usually makeshift kitchens having roofs and partial walls. Transfluthrin-treated chairs reduced outdoor-biting An. arabiensis densities by 70-85%, while transfluthrin-treated hessian ribbons fitted to the outdoor kitchens caused 77-81% reduction in the general peri-domestic area. Almost all the field-collected An. arabiensis (99.4%) and An. funestus (100%) exposed under transfluthrin-treated chairs died. The An. arabiensis were susceptible to non-pyrethroids (pirimiphos methyl and bendiocarb), but resistant to pyrethroids commonly used on LLINs (deltamethrin and permethrin). CONCLUSION: Most houses had actively-used peri-domestic outdoor spaces where exposure to mosquitoes occurred. The transfluthrin-treated chairs and ribbons reduced outdoor-biting malaria vectors in these peri-domestic spaces, and also elicited significant mortality among pyrethroid-resistant field-caught malaria vectors. These two new prototype formats for transfluthrin emanators, if developed further, may constitute new options for complementing LLINs and IRS with outdoor protection against malaria and other mosquito-borne pathogens in areas where peri-domestic human activities are common.


Subject(s)
Cyclopropanes , Fluorobenzenes , Insect Bites and Stings/prevention & control , Insect Repellents , Insecticides , Mosquito Control/instrumentation , Mosquito Control/methods , Adult , Animals , Anopheles , Female , Housing , Humans , Male , Tanzania
SELECTION OF CITATIONS
SEARCH DETAIL
...