Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Front Chem ; 11: 1248456, 2023.
Article in English | MEDLINE | ID: mdl-37601906

ABSTRACT

This study presents velocity-resolved desorption experiments of recombinatively-desorbing oxygen from Ag (111). We combine molecular beam techniques, ion imaging, and temperature-programmed desorption to obtain translational energy distributions of desorbing O2. Molecular beams of NO2 are used to prepare a p (4 × 4)-O adlayer on the silver crystal. The translational energy distributions of O2 are shifted towards hyperthermal energies indicating desorption from an intermediate activated molecular chemisorption state.

2.
Phys Chem Chem Phys ; 24(43): 26421-26427, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36155603

ABSTRACT

We combine velocity map imaging (VMI) with temperature-programmed desorption (TPD) experiments to record the angular-resolved velocity distributions of recombinatively-desorbing oxygen from Rh(111). We assign the velocity distributions to desorption from specific surface and sub-surface states by matching the recorded distributions to the desorption temperature. These results provide insight into the recombinative desorption mechanisms and the availability of oxygen for surface-catalyzed reactions.

3.
J Phys Chem Lett ; 12(25): 5844-5849, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34138568

ABSTRACT

Oxygen atoms on transition metal surfaces are highly mobile under the demanding pressures and temperatures typically employed for heterogeneously catalyzed oxidation reactions. This mobility allows for rapid surface diffusion of oxygen atoms, as well as absorption into the subsurface and reemergence to the surface, resulting in variable reactivity. Subsurface oxygen atoms play a unique role in the chemistry of oxidized metal catalysts, yet little is known about how subsurface oxygen is formed or returns to the surface. Furthermore, if oxygen diffusion between the surface and subsurface is mediated by defects, there will be localized changes in the surface chemistry due to the elevated oxygen concentration near the emergence sites. We observed that oxygen atoms emerge preferentially along the boundary between surface phases and that subsurface oxygen is depleted before the surface oxide decomposes.

4.
J Phys Condens Matter ; 29(16): 164002, 2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28323632

ABSTRACT

Subsurface oxygen is known to form in transition metals, and is thought to be an important aspect of their ability to catalyze chemical reactions. The formation of subsurface oxygen is not, however, equivalent across all catalytically relevant metals. As a result, it is difficult to predict the stability and ease of the formation of subsurface oxygen in metals, as well as how the absorbed oxygen affects the chemical and physical properties of the metal. In comparing how a stepped platinum surface, Pt(5 5 3), responds to exposure to gas-phase oxygen atoms under ultra-high vacuum conditions to planar Rh(1 1 1), we are able to determine what role, if any, steps have on the capacity of a metal for subsurface oxygen formation. Despite the presence of regular defects, we found that only surface-bound oxygen formed on Pt(5 5 3). Alternatively, on the Rh(1 1 1) surface, oxygen readily absorbed into the selvedge of the metal. These results suggest that defects alone are insufficient for the formation of subsurface oxygen, and the ability of the metal to absorb oxygen is the primary factor in the formation and stabilization of subsurface oxygen.

5.
J Phys Chem Lett ; 7(13): 2402-6, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27284787

ABSTRACT

Although important to heterogeneous catalysis, the ability to accurately model reactions of polyatomic molecules with metal surfaces has not kept pace with developments in gas phase dynamics. Partnering the specific reaction parameter (SRP) approach to density functional theory with ab initio molecular dynamics (AIMD) extends our ability to model reactions with metals with quantitative accuracy from only the lightest reactant, H2, to essentially all molecules. This is demonstrated with AIMD calculations on CHD3 + Ni(111) in which the SRP functional is fitted to supersonic beam experiments, and validated by showing that AIMD with the resulting functional reproduces initial-state selected sticking measurements with chemical accuracy (4.2 kJ/mol ≈ 1 kcal/mol). The need for only semilocal exchange makes our scheme computationally tractable for dissociation on transition metals.

6.
Phys Rev Lett ; 116(13): 136101, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27081992

ABSTRACT

The interaction of platinum with water plays a key role in (electro)catalysis. Herein, we describe a combined theoretical and experimental study that resolves the preferred adsorption structure of water wetting the Pt(111)-step type with adjacent (111) terraces. Double stranded lines wet the step edge forming water tetragons with dissimilar hydrogen bonds within and between the lines. Our results qualitatively explain experimental observations of water desorption and impact our thinking of solvation at the Pt electrochemical interface.

7.
J Chem Phys ; 141(18): 18C514, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399179

ABSTRACT

The interaction of atomic and molecular species with water and ice is of fundamental importance for chemistry. In a previous series of publications, we demonstrated that translational energy activates the embedding of Xe and Kr atoms in the near surface region of ice surfaces. In this paper, we show that inert molecular species may be absorbed in a similar fashion. We also revisit Xe embedding, and further probe the nature of the absorption into the selvedge. CF4 molecules with high translational energies (≥3 eV) were observed to embed in amorphous solid water. Just as with Xe, the initial adsorption rate is strongly activated by translational energy, but the CF4 embedding probability is much less than for Xe. In addition, a larger molecule, SF6, did not embed at the same translational energies that both CF4 and Xe embedded. The embedding rate for a given energy thus goes in the order Xe > CF4 > SF6. We do not have as much data for Kr, but it appears to have a rate that is between that of Xe and CF4. Tentatively, this order suggests that for Xe and CF4, which have similar van der Waals radii, the momentum is the key factor in determining whether the incident atom or molecule can penetrate deeply enough below the surface to embed. The more massive SF6 molecule also has a larger van der Waals radius, which appears to prevent it from stably embedding in the selvedge. We also determined that the maximum depth of embedding is less than the equivalent of four layers of hexagonal ice, while some of the atoms just below the ice surface can escape before ice desorption begins. These results show that energetic ballistic embedding in ice is a general phenomenon, and represents a significant new channel by which incident species can be trapped under conditions where they would otherwise not be bound stably as surface adsorbates. These findings have implications for many fields including environmental science, trace gas collection and release, and the chemical composition of astrophysical icy bodies in space.

8.
Phys Chem Chem Phys ; 15(47): 20545-54, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-24177493

ABSTRACT

The experimental observations of vibrational mode- and bond-selective chemistry at the gas-surface interface indicate that energy redistribution within the reaction complex is not statistical on the timescale of reaction. Such behavior is a key prerequisite for efforts to use selective vibrational excitation to control chemistry at the technologically important gas-surface interface. This paper outlines a framework for understanding the origin of non-statistical reactivity on surfaces. The model focuses on the kinetic competition between intramolecular vibrational energy redistribution (IVR) within the reaction complex, which in the long-time limit leads to statistical behavior, and quenching, scattering, or desorption processes that restrict the extent of IVR prior to reaction. Characteristic timescales for these processes drawn from studies of vibrational energy flow dynamics on surfaces and in the gas and condensed phases suggest that IVR is severely limited for important classes of surface reactions. Under these conditions, selective vibrational excitation can lead to preferential transition state access and result in mode- or bond-selective chemistry, even at high collision energies above the barrier to reaction. In addition to providing a basis for understanding experimental observations, the model provides guidance for identifying other gas-surface reactions that may exhibit mode-selective behavior.

9.
J Chem Phys ; 136(14): 144705, 2012 Apr 14.
Article in English | MEDLINE | ID: mdl-22502541

ABSTRACT

The flow of energy from the impact site of a heavy, translationally energetic xenon atom on an ice surface leads to several non-equilibrium events. The central focus of this paper is on the collision-induced desorption (sputtering) of water molecules into the gas-phase from the ice surface. Sputtering is strongly activated with respect to xenon translational energy, and a threshold for desorption was observed. To best understand these results, we discuss our findings in the context of other sputtering studies of molecular solids. The sputtering yield is quite small; differential measurements of the energy of xenon scattered from ice surfaces show that the ice efficiently accommodates the collisional energy. These results are important as they quantitatively elucidate the dynamics of such sputtering events, with implications for energetic non-equilibrium processes at interfaces.

10.
J Chem Phys ; 134(3): 034703, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21261380

ABSTRACT

The sticking coefficient for D(2)O impinging on crystalline D(2)O ice was determined for incident translational energies between 0.3 and 0.7 eV and for H(2)O on crystalline H(2)O ice at 0.3 eV. These experiments were done using directed molecular beams, allowing for precise control of the incident angle and energy. Experiments were also performed to measure the intensity and energy of the scattered molecules as a function of scattering angle. These results show that the sticking coefficient was near unity, slightly increasing with decreasing incident energy. However, even at the lowest incident energy, some D(2)O did not stick and was scattered from the ice surface. We observe under these conditions that the sticking probability asymptotically approaches but does not reach unity for water sticking on water ice. We also present evidence that the scattered fraction is consistent with a binary collision; the molecules are scattered promptly. These results are especially relevant for condensation processes occurring under nonequilibrium conditions, such as those found in astrophysical systems.


Subject(s)
Ice , Water/chemistry , Deuterium Oxide/chemistry , Motion , Spectroscopy, Fourier Transform Infrared , Surface Properties
11.
Proc Natl Acad Sci U S A ; 108(3): 977-82, 2011 Jan 18.
Article in English | MEDLINE | ID: mdl-20713734

ABSTRACT

The surface dynamics of amorphous and semicrystalline polymer films have been measured using helium atom scattering. Time-of-flight data were collected to resolve the elastic and inelastic scattering components in the diffuse scattering of neutral helium atoms from the surface of a thin poly(ethylene terephthalate) film. Debye-Waller attenuation was observed for both the amorphous and semicrystalline phases of the polymer by recording the decay of elastically scattered helium atoms with increasing surface temperature. Thermal attenuation measurements in the specular scattering geometry yielded perpendicular mean-square displacements of 2.7•10(-4) Å(2) K(-1) and 3.1•10(-4) Å(2) K(-1) for the amorphous and semicrystalline surfaces, respectively. The semicrystalline surface was consistently ∼15% softer than the amorphous across a variety of perpendicular momentum transfers. The Debye-Waller factors were also measured at off-specular angles to characterize the parallel mean-square displacements, which were found to increase by an order of magnitude over the perpendicular mean-square displacements for both surfaces. In contrast to the perpendicular motion, the semicrystalline state was ∼25% stiffer than the amorphous phase in the surface plane. These results were uniquely accessed through low-energy neutral helium atom scattering due to the highly surface-sensitive and nonperturbative nature of these interactions. The goal of tailoring the chemical and physical properties of complex advanced materials requires an improved understanding of interfacial dynamics, information that is obtainable through atomic beam scattering methods.


Subject(s)
Chemistry, Physical/methods , Models, Chemical , Polyethylene Terephthalates/chemistry , Helium/chemistry , Scattering, Radiation , Surface Properties , Temperature
12.
J Phys Chem A ; 115(16): 3736-45, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-20722441

ABSTRACT

We herein report on the chemical and physical changes that occur in thin films of poly(methyl methacrylate), PMMA, induced by exposure to high-energy vacuum ultraviolet radiation and a supersonic beam of neutral, ground electronic state O((3)P) atomic oxygen. A combination of in situ quartz crystal microbalance and in situ Fourier-transform infrared reflection-absorption spectroscopy were used to determine the photochemical reaction kinetics and mechanisms during irradiation. The surface morphological changes were measured with atomic force microscopy. The results showed there was no enhancement in the mass loss rate during simultaneous exposure of vacuum ultraviolet (VUV) radiation and atomic oxygen. Rather, the rate of mass loss was impeded when the polymer film was exposed to both reagents. This study elucidates the kinetics of photochemical and oxidative reaction for PMMA, and shows that the synergistic effect involving VUV irradiation and exposure to ground state atomic oxygen depends substantially on the relative fluxes of these reagents.


Subject(s)
Oxygen/chemistry , Polymethyl Methacrylate/chemistry , Ultraviolet Rays , Kinetics , Oxidation-Reduction , Photochemistry , Vacuum
13.
Science ; 319(5864): 790-3, 2008 Feb 08.
Article in English | MEDLINE | ID: mdl-18258910

ABSTRACT

Energy redistribution, including the many phonon-assisted and electronically assisted energy-exchange processes at a gas-metal interface, can hamper vibrationally mediated selectivity in chemical reactions. We establish that these limitations do not prevent bond-selective control of a heterogeneously catalyzed reaction. State-resolved gas-surface scattering measurements show that the nu1 C-H stretch vibration in trideuteromethane (CHD3) selectively activates C-H bond cleavage on a Ni(111) surface. Isotope-resolved detection reveals a CD3:CHD2 product ratio > 30:1, which contrasts with the 1:3 ratio for an isoenergetic ensemble of CHD3 whose vibrations are statistically populated. Recent studies of vibrational energy redistribution in the gas and condensed phases suggest that other gas-surface reactions with similar vibrational energy flow dynamics might also be candidates for such bond-selective control.

14.
Chemosphere ; 48(9): 1003-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12222783

ABSTRACT

The application of an improved method based on multidetector gas chromatography to the determination of trace levels of organoarsines in complex matrices is described. The method using headspace-mode solid-phase microextraction (SPME) was applied to a carefully sampled and preserved freshwater sediment core obtained from central Green Bay, Lake Michigan. The sediment core was collected and fractionated in an inert atmosphere. A carboxen/ polydimethylsiloxane-coated SPME fiber (85 microm film thickness) was equilibrated (n = 4) for 60 min at 25 degrees C in the headspace of the sample vessel before introduction to the chromatograph. Conventional quadrupole ion trap mass spectrometry (electron impact ionization), electron capture detection, and pulsed flame photometric detection (arsenic mode) were employed for structure elucidation. A heretofore unidentified species in this region, dimethylchloroarsine (DMCA). was identified. The mass spectrum for DMCA is interpreted based on the observed fragmentation pattern. A bimodal vertical distribution of DMCA in the sediment core sample was observed and its interpretation based on Pb-210 dating is reported.


Subject(s)
Arsenicals/analysis , Soil Pollutants/analysis , Chemical Industry , Environmental Monitoring , Gas Chromatography-Mass Spectrometry , Herbicides , Michigan
SELECTION OF CITATIONS
SEARCH DETAIL