Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Struct Biol X ; 1: 100004, 2019.
Article in English | MEDLINE | ID: mdl-32647811

ABSTRACT

In various mineralizing marine organisms, calcite or aragonite crystals form through the initial deposition of amorphous calcium carbonate (ACC) phases with different hydration levels. Using X-ray PhotoEmission Electron spectroMicroscopy (X-PEEM), ACCs with varied spectroscopic signatures were previously identified. In particular, ACC type I and II were recognized in embryonic sea urchin spicules. ACC type I was assigned to hydrated ACC based on spectral similarity with synthetic hydrated ACC. However, the identity of ACC type II has never been unequivocally determined experimentally. In the present study we show that synthetic anhydrous ACC and ACC type II identified here in sea urchin spines, have similar Ca L 2,3-edge spectra. Moreover, using X-PEEM chemical mapping, we revealed the presence of ACC-H2O and anhydrous ACC in growing stereom and septa regions of sea urchin spines, supporting their role as precursor phases in both structures. However, the distribution and the abundance of the two ACC phases differ substantially between the two growing structures, suggesting a variation in the crystal growth mechanism; in particular, ACC dehydration, in the two-step reaction ACC-H2O → ACC → calcite, presents different kinetics, which are proposed to be controlled biologically.

2.
Exp Cell Res ; 359(1): 205-214, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28782554

ABSTRACT

The sea urchin larval embryo elaborates two calcitic endoskeletal elements called spicules. Spicules are synthesized by the primary mesenchyme cells (PMCs) and begin to form at early gastrula stage. It is known that the calcium comprising the spicules comes from the seawater and we wish to further consider the mode of calcium transport from the extracellular seawater to the PMCs and then onto the forming spicules. We used PMC in vitro cultures, calcein, fluorescently labeled dextran, and fluorescently labeled Wheat Germ Agglutinin (WGA) to track calcium transport from the seawater into PMCs and spicules and to determine how molecules from the surface of PMCs interact with the incoming calcium. Labeling of PMC endocytic vesicles and forming spicules by both calcein and fluorescently tagged dextran indicate that calcium is taken up from the seawater by endocytosis and directly incorporated into spicules. Calcein labeling studies also indicate that calcium from the extracellular seawater begins to be incorporated into spicules within 30min of uptake. In addition, we demonstrate that fluorescently labeled WGA and calcein are taken up by many of the same endocytic vesicles and are incorporated into growing spicules. These findings suggest that PMC specific surface molecules accompany calcium ions as they enter PMCs via endocytosis and are incorporated together in the growing spicule. Using anti-spicule matrix protein antibodies, we pinpoint a subset of spicule matrix proteins that may accompany calcium ions from the surface of the PMCs until they are incorporated into spicules. Msp130 is identified as one of these spicule matrix proteins.


Subject(s)
Endocytosis , Mesoderm/cytology , Osteogenesis , Strongylocentrotus purpuratus/cytology , Strongylocentrotus purpuratus/growth & development , Animals , Calcium/metabolism , Cells, Cultured , Dextrans/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Space/metabolism , Fluoresceins/metabolism , Kinetics , Larva/cytology , Larva/metabolism , Mesoderm/metabolism , Strongylocentrotus purpuratus/metabolism , Wheat Germ Agglutinins/metabolism
3.
J Phys Chem B ; 118(28): 8449-57, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24821199

ABSTRACT

X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment.


Subject(s)
Calcium Carbonate/chemistry , Minerals/chemistry , Oxygen/chemistry , Microscopy, Electron, Scanning , X-Ray Absorption Spectroscopy
4.
Methods Enzymol ; 532: 367-88, 2013.
Article in English | MEDLINE | ID: mdl-24188776

ABSTRACT

We describe modern molecular biology methods currently used in the study of biomineralization. We focus our descriptions on two areas of biomineralization research in which these methods have been particularly powerful. The first area is the use of modern molecular methods to identify and characterize the so-called occluded matrix proteins present in mineralized tissues. More specifically, we describe the use of RNA-seq and the next generation of DNA sequencers and the use of direct protein sequencing and mass spectrometers as ways of identifying proteins present in mineralized tissues. The second area is the use of molecular methods to examine the function of proteins in biomineralization. RNA interference (RNAi), morpholino antisense, and other methods are described and discussed as ways of elucidating protein function.


Subject(s)
Gene Knockdown Techniques , Animals , Calcification, Physiologic , Humans , Molecular Biology , Morpholinos/genetics , Proteins/genetics , Proteins/metabolism , RNA Interference , Sequence Analysis, DNA
5.
J Struct Biol ; 183(2): 180-90, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23806677

ABSTRACT

We analyzed the calcitic prismatic layers in Atrina rigida (Ar), Haliotis iris (Hi), Haliotis laevigata (HL), Haliotis rufescens (Hrf), Mytilus californianus (Mc), Pinctada fucata (Pf), Pinctada margaritifera (Pm) shells, and the aragonitic prismatic layer in the Nautilus pompilius (Np) shell. Dramatic structural differences were observed across species, with 100-µm wide single-crystalline prisms in Hi, HL and Hrf, 1-µm wide needle-shaped calcite prisms in Mc, 1-µm wide spherulitic aragonite prisms in Np, 20-µm wide single-crystalline calcite prisms in Ar, and 20-µm wide polycrystalline calcite prisms in Pf and Pm. The calcite prisms in Pf and Pm are subdivided into sub-prismatic domains of orientations, and within each of these domains the calcite crystal lattice tilts gradually over long distances, on the order of 100 µm, with an angle spread of crystal orientation of 10-20°. Furthermore, prisms in Pf and Pm are harder than in any other calcite prisms analyzed, their nanoparticles are smaller, and the angle spread is strongly correlated with hardness in all shells that form calcitic prismatic layers. One can hypothesize a causal relationship of these correlated parameters: greater angle spread may confer greater hardness and resistance to wear, thus providing Pf and Pm with a structural advantage in their environment. This is the first structure-property relationship thus far hypothesized in mollusk shell prisms.


Subject(s)
Animal Shells/chemistry , Calcium Carbonate/chemistry , Mollusca/physiology , Animal Shells/metabolism , Animals , Mollusca/anatomy & histology
6.
J Struct Biol ; 183(2): 199-204, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23583702

ABSTRACT

A central issue in better understanding the process of biomineralization is to elucidate the function of occluded matrix proteins present in mineralized tissues. A potent approach to addressing this issue utilizes specific inhibitors of expression of known genes. Application of antisense oligonucleotides that specifically suppress translation of a given mRNA are capable of causing aberrant biomineralization, thereby revealing, at least in part, a likely function of the protein and gene under investigation. We have applied this approach to study the possible function(s) of the SM30 family of proteins, which are found in spicules, teeth, spines, and tests of Strongylocentrotus purpuratus as well as other euechinoid sea urchins. It is possible using the anti-SM30 morpholino-oligonucleotides (MO's) to reduce the level of these proteins to very low levels, yet the development of skeletal spicules in the embryo shows little or no aberration. This surprising result requires re-thinking about the role of these, and possibly other occluded matrix proteins.


Subject(s)
Animal Shells/growth & development , Cytoskeletal Proteins/metabolism , Animal Shells/chemistry , Animals , Cytoskeletal Proteins/genetics , Embryo, Nonmammalian/metabolism , Gene Silencing , Larva , Morpholinos/genetics , RNA, Messenger/biosynthesis , Sea Urchins/anatomy & histology , Sea Urchins/embryology , Sea Urchins/growth & development
7.
Proc Natl Acad Sci U S A ; 109(16): 6088-93, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22492931

ABSTRACT

Crystalline biominerals do not resemble faceted crystals. Current explanations for this property involve formation via amorphous phases. Using X-ray absorption near-edge structure (XANES) spectroscopy and photoelectron emission microscopy (PEEM), here we examine forming spicules in embryos of Strongylocentrotus purpuratus sea urchins, and observe a sequence of three mineral phases: hydrated amorphous calcium carbonate (ACC · H(2)O) → dehydrated amorphous calcium carbonate (ACC) → calcite. Unexpectedly, we find ACC · H(2)O-rich nanoparticles that persist after the surrounding mineral has dehydrated and crystallized. Protein matrix components occluded within the mineral must inhibit ACC · H(2)O dehydration. We devised an in vitro, also using XANES-PEEM, assay to identify spicule proteins that may play a role in stabilizing various mineral phases, and found that the most abundant occluded matrix protein in the sea urchin spicules, SM50, stabilizes ACC · H(2)O in vitro.


Subject(s)
Biocompatible Materials/chemistry , Calcification, Physiologic , Calcium Carbonate/chemistry , Phase Transition , Animals , Biocompatible Materials/metabolism , Calcium Carbonate/metabolism , Crystallization , Embryo, Nonmammalian/chemistry , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/ultrastructure , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Developmental , Microscopy, Electron/methods , Minerals/chemistry , Minerals/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Strongylocentrotus purpuratus/chemistry , Strongylocentrotus purpuratus/embryology , Strongylocentrotus purpuratus/metabolism , Water/chemistry , X-Ray Absorption Spectroscopy/methods
8.
Nanoscale ; 3(2): 603-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21082124

ABSTRACT

Sea urchin biominerals have been shown to form from aggregating nanoparticles of amorphous calcium carbonate (ACC), which then crystallize into macroscopic single crystals of calcite. Here we measure the surface areas of these biominerals and find them to be comparable to those of space-filling macroscopic geologic calcite crystals. These biominerals differ from synthetic mesocrystals, which are invariably porous. We propose that space-filling ACC is the structural precursor for echinoderm biominerals.


Subject(s)
Nanoparticles/chemistry , Animals , Calcium Carbonate/chemistry , Crystallization , Sea Urchins/chemistry
9.
Proc Natl Acad Sci U S A ; 107(38): 16438-43, 2010 Sep 21.
Article in English | MEDLINE | ID: mdl-20810918

ABSTRACT

Amorphous calcium carbonate (ACC) is a metastable phase often observed during low temperature inorganic synthesis and biomineralization. ACC transforms with aging or heating into a less hydrated form, and with time crystallizes to calcite or aragonite. The energetics of transformation and crystallization of synthetic and biogenic (extracted from California purple sea urchin larval spicules, Strongylocentrotus purpuratus) ACC were studied using isothermal acid solution calorimetry and differential scanning calorimetry. Transformation and crystallization of ACC can follow an energetically downhill sequence: more metastable hydrated ACC → less metastable hydrated ACC ⇒ anhydrous ACC ∼ biogenic anhydrous ACC ⇒ vaterite → aragonite → calcite. In a given reaction sequence, not all these phases need to occur. The transformations involve a series of ordering, dehydration, and crystallization processes, each lowering the enthalpy (and free energy) of the system, with crystallization of the dehydrated amorphous material lowering the enthalpy the most. ACC is much more metastable with respect to calcite than the crystalline polymorphs vaterite or aragonite. The anhydrous ACC is less metastable than the hydrated, implying that the structural reorganization during dehydration is exothermic and irreversible. Dehydrated synthetic and anhydrous biogenic ACC are similar in enthalpy. The transformation sequence observed in biomineralization could be mainly energetically driven; the first phase deposited is hydrated ACC, which then converts to anhydrous ACC, and finally crystallizes to calcite. The initial formation of ACC may be a first step in the precipitation of calcite under a wide variety of conditions, including geological CO(2) sequestration.


Subject(s)
Calcium Carbonate/chemistry , Animals , Calcium Carbonate/isolation & purification , Calorimetry, Differential Scanning , Chemical Precipitation , Crystallization , Powder Diffraction , Spectroscopy, Fourier Transform Infrared , Strongylocentrotus purpuratus/chemistry , Thermodynamics
10.
J Am Chem Soc ; 132(18): 6329-34, 2010 May 12.
Article in English | MEDLINE | ID: mdl-20397648

ABSTRACT

Proteins play a major role in the formation of all biominerals. In mollusk shell nacre, complex mixtures and assemblies of proteins and polysaccharides were shown to induce aragonite formation, rather than the thermodynamically favored calcite (both aragonite and calcite are CaCO(3) polymorphs). Here we used N16N, a single 30 amino acid-protein fragment originally inspired by the mineral binding site of N16, a protein in the nacre layer of the Japanese pearl oysters (Pinctada fucata). In a calcite growth solution this short peptide induces in vitro biomineralization. This model biomineral was analyzed using X-ray PhotoElectron Emission spectroMicroscopy (X-PEEM) and found to be strikingly similar to natural nacre: lamellar aragonite with interspersed N16N layers. This and other findings combined suggest a hypothetical scenario in which in vivo three proteins (N16, Pif80, and Pif97) and a polysaccharide (chitin) work in concert to form lamellar nacre.


Subject(s)
Calcium Carbonate/metabolism , Peptide Fragments/metabolism , Pinctada , Amino Acid Sequence , Animals , Binding Sites , Calcium Carbonate/chemistry , Molecular Sequence Data , Peptide Fragments/chemistry , Protein Structure, Tertiary
11.
Gene Expr Patterns ; 10(2-3): 135-9, 2010.
Article in English | MEDLINE | ID: mdl-20097309

ABSTRACT

The SpSM30 gene family of the sea urchin, Strongylocentrotus purpuratus, is comprised of six members, designated SpSM30A through SpSM30F (Livingston et al., 2006). The SpSM30 proteins are found uniquely in embryonic and adult mineralized tissues of the sea urchin. Previous studies have revealed that SpSM30 proteins are occluded within the embryonic endoskeleton and adult mineralized tissues (Killian and Wilt, 1996; Mann et al., 2008a,b; Urry et al., 2000). Furthermore, some of the SpSM30 proteins are among the most abundant of the approximately four-dozen integral matrix proteins of the larval spicule (Killian and Wilt, 1996). The amino acid sequence, protein domain architecture, and contiguity within the genome strongly support the supposition that the six genes constitute a gene family. Reverse transcription-polymerase chain reaction (RT-PCR) is used in the present study to describe the time course of expression of the family members during embryonic development, and their expression in adult tissues. SpSM30A, B, C and E are expressed, albeit at different levels, during overt spicule deposition in the embryo with some differences in the precise timing of expression. SpSM30D is not expressed in the embryo, and SpSM30F is expressed transiently and at low levels just prior to overt spicule formation. Whole mount in situ hybridization studies show that SpSM30A, B, C, and E are expressed exclusively in primary mesenchyme (PMC) cells and their descendants. In addition, tissue fractionation studies indicate that SpSM30F expression is highly enriched in PMCs. Each adult tissue examined expresses a different cohort of the SpSM30 family members at varying levels: SpSM30A mRNA is not expressed in adult tissues. Its expression is limited to the embryo. Conversely, SpSM30D mRNA is not expressed in the embryo, but is expressed in adult spines and teeth. SpSM30B and SpSM30C are expressed at modest levels in all mineralized adult tissues; SpSM30E is expressed highly in tooth and test; and SpSM30F is expressed in spine and at low levels in the other adult tissues except the test. Relative levels of expression of the several family members in these different tissues vary widely. It is likely SpSM30 proteins play a vital, but still unknown, role in biomineralization of these tissues during development.


Subject(s)
Calcification, Physiologic/genetics , Cytoskeletal Proteins/genetics , Glycoproteins/genetics , Animals , Calcification, Physiologic/physiology , Cytoskeletal Proteins/biosynthesis , Embryo, Nonmammalian/metabolism , Extracellular Matrix Proteins/genetics , Gene Expression Regulation, Developmental , Glycoproteins/biosynthesis , Multigene Family , Strongylocentrotus purpuratus/genetics
12.
J Am Chem Soc ; 131(51): 18404-9, 2009 Dec 30.
Article in English | MEDLINE | ID: mdl-19954232

ABSTRACT

Sea urchin teeth are remarkable and complex calcite structures, continuously growing at the forming end and self-sharpening at the mature grinding tip. The calcite (CaCO(3)) crystals of tooth components, plates, fibers, and a high-Mg polycrystalline matrix, have highly co-oriented crystallographic axes. This ability to co-orient calcite in a mineralized structure is shared by all echinoderms. However, the physico-chemical mechanism by which calcite crystals become co-oriented in echinoderms remains enigmatic. Here, we show differences in calcite c-axis orientations in the tooth of the purple sea urchin ( Strongylocentrotus purpuratus ), using high-resolution X-ray photoelectron emission spectromicroscopy (X-PEEM) and microbeam X-ray diffraction (muXRD). All plates share one crystal orientation, propagated through pillar bridges, while fibers and polycrystalline matrix share another orientation. Furthermore, in the forming end of the tooth, we observe that CaCO(3) is present as amorphous calcium carbonate (ACC). We demonstrate that co-orientation of the nanoparticles in the polycrystalline matrix occurs via solid-state secondary nucleation, propagating out from the previously formed fibers and plates, into the amorphous precursor nanoparticles. Because amorphous precursors were observed in diverse biominerals, solid-state secondary nucleation is likely to be a general mechanism for the co-orientation of biomineral components in organisms from different phyla.


Subject(s)
Calcium Carbonate/chemistry , Tooth/chemistry , Animals , Crystallization , Sea Urchins/anatomy & histology , Sea Urchins/chemistry , X-Ray Diffraction
14.
Exp Cell Res ; 314(8): 1744-52, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18355808

ABSTRACT

Skeleton formation involves secretion of massive amounts of mineral precursor, usually a calcium salt, and matrix proteins, many of which are deposited on, or even occluded within, the mineral. The cell biological underpinnings of this secretion and subsequent assembly of the biomineralized skeletal element is not well understood. We ask here what is the relationship of the trafficking and secretion of the mineral and matrix within the primary mesenchyme cells of the sea urchin embryo, cells that deposit the endoskeletal spicule. Fluorescent labeling of intracellular calcium deposits show mineral precursors are present in granules visible by light microscopy, from whence they are deposited in the endoskeletal spicule, especially at its tip. In contrast, two different matrix proteins tagged with GFP are present in smaller post-Golgi vesicles only seen by electron microscopy, and the secreted protein are only incorporated into the spicule in the vicinity of the cell of origin. The matrix protein, SpSM30B, is post-translationally modified during secretion, and this processing continues after its incorporation into the spicule. Our findings also indicate that the mineral precursor and two well characterized matrix proteins are trafficked by different cellular routes.


Subject(s)
Calcification, Physiologic , Strongylocentrotus purpuratus/embryology , Animals , Calcium/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Green Fluorescent Proteins/genetics , Recombinant Fusion Proteins/analysis , Strongylocentrotus purpuratus/cytology , Strongylocentrotus purpuratus/metabolism
15.
Dev Biol ; 300(1): 416-33, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17054939

ABSTRACT

The sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote. The sea urchin "calcium toolkit" as predicted by the genome is described. Emphasis is on the Ca(2+) signaling modules operating during egg activation, but the Ca(2+) signaling repertoire has ramifications for later developmental events and adult physiology as well. Presented here are the mechanisms that control the initial release of Ca(2+) at fertilization and additional signaling components predicted by the genome and found to be expressed and operating in eggs at fertilization. The initial release of Ca(2+) serves to coordinate egg activation, which is largely a phenomenon of post-translational modifications, especially dynamic protein phosphorylation. Functional proteomics can now be used to identify the phosphoproteome in general and specific kinase targets in particular. This approach is described along with findings to date. Key outstanding questions regarding the activation of the developmental program are framed in the context of what has been learned from the genome and how this knowledge can be applied to functional studies.


Subject(s)
Calcium Signaling/genetics , Calcium/physiology , Oogenesis/genetics , Ovum/physiology , Phosphoproteins/genetics , Proteome , Sea Urchins/genetics , Animals , Cell Fractionation , Female , Fertilization/genetics , Fertilization/physiology , Genome , Humans , Male , Ovum/cytology , Sperm-Ovum Interactions/physiology , Spermatozoa/physiology
16.
Differentiation ; 71(4-5): 237-50, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12823225

ABSTRACT

Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?


Subject(s)
Cell Differentiation/physiology , Invertebrates/embryology , Skeleton , Animals , Extracellular Matrix Proteins/physiology , Invertebrates/growth & development
17.
Dev Growth Differ ; 37(1): 69-78, 1995 Feb.
Article in English | MEDLINE | ID: mdl-37281595

ABSTRACT

When proteins isolated from spicules of Strongylocentrotus purpuratus embryos were examined by western blot analysis, a major protein of approximately 43 kDa was observed to react with the monoclonal antibody, mAb 1223. Previous studies have established that this antibody recognizes an asparagine-linked, anionic carbohydrate epitope on the cell surface glycoprotein, msp130. This protein has been shown to be specifically associated with the primary mesenchyme cells involved in assembly of the spicule. Moreover, several lines of evidence have implicated the carbohydrate epitope in Ca2+ deposition into the growing spicule. The 43 kDa, spicule matrix protein detected with mAb 1223 also reacted with a polyclonal antibody to a known spicule matrix protein, SM30. Further characterization experiments, including deglycosylation using PNGaseF, two-dimensional electrophoresis, and immunoprecipitation, verified that the 43 kDa spicule matrix protein had a pl of approximately 4.0, contained the carbohydrate epitope recognized by monoclonal antibody mAb 1223 and reacted with anti-SM30. Electron microscopy confirmed the presence of proteins within the demineralized spicule that reacted with mAb 1223 and anti-SM30. We conclude that the spicule matrix protein, SM30, is a glycoprotein containing carbohydrate chains similar or identical to those on the primary mesenchyme cell membrane glycoprotein, msp130.

SELECTION OF CITATIONS
SEARCH DETAIL
...