Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Cachexia Sarcopenia Muscle ; 9(3): 540-546, 2018 06.
Article in English | MEDLINE | ID: mdl-29663711

ABSTRACT

BACKGROUND: Muscle mass can be measured directly in vivo by isotope dilution, using Creatine-(methyl-d3 ) monohydrate (D3 -Cr) by mouth followed by measurement of the steady-state enrichment of D3 -creatinine (D3 -Crn) in urine. Isotope dilution methods require knowledge of the amount of tracer delivered to the pool of interest. In a subset of human subjects, a small amount of orally administered D3 -Cr 'spills' into urine after absorption and prior to transport into skeletal muscle cells. The objectives were to develop a method to correct for spillage to compare the estimate of muscle mass by D3 -Cr dilution to other assessments of fat-free mass. METHODS: Subjects (19 males, 23-81 years old; 20 females, 20-77 years old) ingested a single dose of 60 mg D3 -Cr and urine was collected prior to and daily for 4 days following the dose. Fasting morning urine samples was assessed for D3 -Cr, total Cr, D3 -Crn, and total Crn concentrations, as well as isotopic enrichments of D3 -Crn, by LC/MS. The 24-h urine collections over 3 days after the dose of D3 -Cr were also performed to determine D3 -Cr spillage. Total body water, fat mass, and fat-free mass were assessed by bioelectrical impedance spectroscopy (BIS). RESULTS: Spillage of D3 -Cr in the urine was greater in women than men. D3 -Crn enrichment and the ratio of Cr/Crn were used in an algorithm to calculate Cr pool size and muscle mass. Specifically, an algorithm was developed for the estimation of spillage based on the relationship between the fasting Cr/Crn ratio and the cumulative proportion of the D3 -Cr dose excreted over 3 days based on 24-h urine collections. Muscle mass corrected using the algorithm based on fasting urine levels correlated (r = 0.9967, P < 0.0001) with that corrected by measuring D3 -Cr dose excreted. Muscle mass measured by D3 -Crn enrichment also correlated (r = 0.8579, P < 0.0001, algorithm corrected) with that measured by 24-h Crn excretion. Muscle mass measured by D3 -Cr dilution method correlated with intracellular water by BIS, whether using spillage corrected by the algorithm (r = 0.9041, P < 0.0001) or measured by 3 day D3 -Cr losses (r = 0.91, P < 0.0001) and similarly correlated with fat-free mass by BIA (r = 0.8857 and 0.8929, P < 0.0001, respectively). CONCLUSIONS: The D3 -Cr dilution method is further validated here as a non-invasive, easy-to-use test for measuring muscle mass. The technical issue of D3 -Cr spillage can be corrected for with a simple algorithm based on fasting spot urine samples. Muscle mass by Cr dilution potentially has broad applications in clinical and research settings.


Subject(s)
Creatine/administration & dosage , Creatine/urine , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Adult , Aged , Aged, 80 and over , Algorithms , Biomarkers , Creatine/pharmacokinetics , Creatinine/urine , Female , Humans , Male , Middle Aged , Models, Statistical , Organ Size , Urinalysis , Young Adult
2.
J Lipid Res ; 56(9): 1727-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26117661

ABSTRACT

The goal of this study was to understand how the reconstituted HDL (rHDL) phospholipid (PL) composition affects its cholesterol efflux and anti-inflammatory properties. An ApoA-I mimetic peptide, 5A, was combined with either SM or POPC. Both lipid formulations exhibited similar in vitro cholesterol efflux by ABCA1, but 5A-SM exhibited higher ABCG1- and SR-BI-mediated efflux relative to 5A-POPC (P < 0.05). Injection of both rHDLs in rats resulted in mobilization of plasma cholesterol, although the relative potency was 3-fold higher for the same doses of 5A-SM than for 5A-POPC. Formation of preß HDL was observed following incubation of rHDLs with both human and rat plasma in vitro, with 5A-SM inducing a higher extent of preß formation relative to 5A-POPC. Both rHDLs exhibited anti-inflammatory properties, but 5A-SM showed higher inhibition of TNF-α, IL-6, and IL-1ß release than did 5A-POPC (P < 0.05). Both 5A-SM and 5A-POPC showed reduction in total plaque area in ApoE(-/-) mice, but only 5A-SM showed a statistically significant reduction over placebo control and baseline (P < 0.01). The type of PL used to reconstitute peptide has significant influence on rHDL's anti-inflammatory and anti-atherosclerosis properties.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Inflammation/metabolism , Sphingomyelins/metabolism , Animals , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/pathology , Humans , Inflammation/drug therapy , Inflammation/pathology , Lipoproteins, HDL/metabolism , Mice , Peptides/administration & dosage , Phosphatidylcholines/administration & dosage , Phospholipids/metabolism , Rats
3.
Atherosclerosis ; 230(2): 322-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24075764

ABSTRACT

OBJECTIVE: Reverse cholesterol transport (RCT) can be defined as a pathway of flux of cholesterol from peripheral tissues to the liver for potential excretion into feces. This prospective, placebo-controlled, double-blind crossover study assessed the effect of ezetimibe on several RCT parameters in hyperlipidemic patients. METHODS: Following 7 weeks of treatment (ezetimibe 10 mg/day or placebo), 26 patients received 24-h continuous IV infusions of [3,4-(13)C2]-cholesterol, then took heavy water ((2)H2O) by mouth. Cholesterol excretion was measured by quantification of neutral/acid sterols in stool and blood samples during 7 days post-infusion with continued treatment. Plasma de novo cholesterol synthesis was assessed by (2)H-labeling from (2)H2O. RESULTS: Ezetimibe significantly reduced levels of low-density lipoprotein cholesterol (22%, P < 0.001) without significant changes in triglycerides and high-density lipoprotein cholesterol and significantly increased the flux of plasma-derived cholesterol into fecal neutral sterols by 52% (P = 0.04) without change in flux into fecal bile acids. Total fecal neutral sterol output increased by 23% (P = 0.02). Plasma de novo cholesterol synthesis increased by 57% (P < 0.001). The fractional clearance rate (FCR) of plasma cholesteryl-ester trended higher (7%; P = 0.055) with a reduction in absolute cholesteryl-ester production rate (9%, P < 0.01). Whole-body free cholesterol efflux rate from extra-hepatic tissues into plasma was not measurably changed by ezetimibe. CONCLUSION: Ezetimibe treatment approximately doubled the flux of plasma-derived cholesterol into fecal neutral sterols, in association with increases in total fecal neutral sterol excretion, FCR of plasma cholesterol ester, and plasma de novo cholesterol synthesis. These effects are consistent with increased cholesterol transport through the plasma compartment and excretion from the body, in response to ezetimibe treatment in hyperlipidemic humans. Clintrials.gov: NCT00701727.


Subject(s)
Anticholesteremic Agents/chemistry , Azetidines/chemistry , Biological Transport/drug effects , Cholesterol/metabolism , Intestinal Mucosa/metabolism , Absorption , Adult , Aged , Anticholesteremic Agents/pharmacology , Azetidines/pharmacology , Cross-Over Studies , Double-Blind Method , Ezetimibe , Feces , Female , Humans , Hyperlipidemias/metabolism , Intestinal Absorption/drug effects , Male , Middle Aged , Prospective Studies , Sterols/chemistry , Sterols/metabolism
4.
J Am Heart Assoc ; 1(4): e001826, 2012 Aug.
Article in English | MEDLINE | ID: mdl-23130164

ABSTRACT

BACKGROUND: Reverse cholesterol transport from peripheral tissues is considered the principal atheroprotective mechanism of high-density lipoprotein, but quantifying reverse cholesterol transport in humans in vivo remains a challenge. We describe here a method for measuring flux of cholesterol though 3 primary components of the reverse cholesterol transport pathway in vivo in humans: tissue free cholesterol (FC) efflux, esterification of FC in plasma, and fecal sterol excretion of plasma-derived FC. METHODS AND RESULTS: A constant infusion of [2,3-(13)C(2)]-cholesterol was administered to healthy volunteers. Three-compartment SAAM II (Simulation, Analysis, and Modeling software; SAAM Institute, University of Washington, WA) fits were applied to plasma FC, red blood cell FC, and plasma cholesterol ester (13)C-enrichment profiles. Fecal sterol excretion of plasma-derived FC was quantified from fractional recovery of intravenous [2,3-(13)C(2)]-cholesterol in feces over 7 days. We examined the key assumptions of the method and evaluated the optimal clinical protocol and approach to data analysis and modeling. A total of 17 subjects from 2 study sites (n=12 from first site, age 21 to 75 years, 2 women; n=5 from second site, age 18 to 70 years, 2 women) were studied. Tissue FC efflux was 3.79±0.88 mg/kg per hour (mean ± standard deviation), or ≍8 g/d. Red blood cell-derived flux into plasma FC was 3.38±1.10 mg/kg per hour. Esterification of plasma FC was ≍28% of tissue FC efflux (1.10±0.38 mg/kg per hour). Recoveries were 7% and 12% of administered [2,3-(13)C(2)]-cholesterol in fecal bile acids and neutral sterols, respectively. CONCLUSIONS: Three components of systemic reverse cholesterol transport can be quantified, allowing dissection of this important function of high-density lipoprotein in vivo. Effects of lipoproteins, genetic mutations, lifestyle changes, and drugs on these components can be assessed in humans. (J Am Heart Assoc. 2012;1:e001826 doi: 10.1161/JAHA.112.001826.).

5.
J Clin Invest ; 122(9): 3159-69, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22922254

ABSTRACT

Progress in neurodegenerative disease research is hampered by the lack of biomarkers of neuronal dysfunction. We here identified a class of cerebrospinal fluid-based (CSF-based) kinetic biomarkers that reflect altered neuronal transport of protein cargo, a common feature of neurodegeneration. After a pulse administration of heavy water (2H2O), distinct, newly synthesized 2H-labeled neuronal proteins were transported to nerve terminals and secreted, and then appeared in CSF. In 3 mouse models of neurodegeneration, distinct 2H-cargo proteins displayed delayed appearance and disappearance kinetics in the CSF, suggestive of aberrant transport kinetics. Microtubule-modulating pharmacotherapy normalized CSF-based kinetics of affected 2H-cargo proteins and ameliorated neurodegenerative symptoms in mice. After 2H2O labeling, similar neuronal transport deficits were observed in CSF of patients with Parkinson's disease (PD) compared with non-PD control subjects, which indicates that these biomarkers are translatable and relevant to human disease. Measurement of transport kinetics may provide a sensitive method to monitor progression of neurodegeneration and treatment effects.


Subject(s)
Amyloid beta-Protein Precursor/cerebrospinal fluid , Axonal Transport , Chromogranin B/cerebrospinal fluid , Neuregulin-1/cerebrospinal fluid , Parkinson Disease, Secondary/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Amyloid beta-Protein Precursor/metabolism , Animals , Biomarkers/cerebrospinal fluid , Case-Control Studies , Chromogranin B/metabolism , Female , Humans , Kinetics , Male , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mutation, Missense , Neuregulin-1/metabolism , Nocodazole/pharmacology , Noscapine/pharmacology , Paclitaxel/pharmacology , Parkinson Disease, Secondary/chemically induced , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Tubulin Modulators/pharmacology , alpha-Synuclein/metabolism , tau Proteins/metabolism
6.
J Neurosci Res ; 85(11): 2374-84, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17551981

ABSTRACT

Microglial activation is emerging as an important etiologic factor and therapeutic target in neurodegenerative and neuroinflammatory diseases. Techniques have been lacking, however, for measuring the different components of microglial activation independently in vivo. We describe a method for measuring microglial proliferation rates in vivo using heavy water (2H2O) labeling, and its application in screening for drugs that suppress neuro-inflammation. Brain microglia were isolated by flow cytometry as F4/80+, CD11b+, CD45(low) cells, and 2H enrichment in DNA was analyzed by gas chromatography/mass spectrometry. Basal proliferation rate was approximately 1%/week and systemic administration of bacterial lipopolysaccharide (LPS) markedly increased this rate in a dose-dependent manner. Induction of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice by MOG(35-55) peptide stimulated proliferation of CD45(low) microglia, which could be distinguished from the proliferation of CD45(high) infiltrating monocytes. Minocycline (45 mg/kg/day, i.p.) inhibited resident microglial proliferation in both the LPS and EAE models. Thirteen drugs were then screened for their ability to inhibit LPS-stimulated microglia proliferation. Female C57BL/6 mice were given LPS (1 mg/kg), and concomitant drug treatment while receiving 2H2O label for 7 days. Among the drugs screened, treatment with isotretinoin dose-dependently reduced LPS-induced microglial proliferation, representing an action of retinoids unknown previously. Follow-up studies in the EAE model confirmed that isotretinoin not only inhibited proliferation of microglia but also delayed the onset of clinical symptoms. In conclusion, 2H2O labeling represents a relatively high-throughput, quantitative, and highly reproducible technique for measuring microglial proliferation, and is useful for screening and discovering novel anti-neuroinflammatory drugs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Deuterium Oxide , Drug Evaluation, Preclinical/methods , Inflammation/drug therapy , Microglia/metabolism , Animals , Cell Proliferation/drug effects , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Flow Cytometry , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Microglia/drug effects , Reproducibility of Results , Sensitivity and Specificity
7.
Biochem Biophys Res Commun ; 331(1): 203-9, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15845379

ABSTRACT

We describe here a highly sensitive technique for measuring DNA synthesis rates of colon epithelial cells in vivo. Male SD rats were given (2)H(2)O (heavy water). Colon epithelial cells were isolated, DNA was extracted, hydrolyzed to deoxyribonucleosides, and the deuterium enrichment of the deoxyribose moiety was determined by gas chromatographic/mass spectrometry. Turnover time of colon crypts and the time for migration of cells from basal to top fraction of the crypts were measured. These data were consistent with cell cycle analysis and bromodeoxyuridine labeling. By giving different concentrations of a promoter, dose-dependent increases in DNA synthesis rates were detected, demonstrating the sensitivity of the method. Administration of a carcinogen increased DNA synthesis rates cell proliferation in all fractions of the crypt. In conclusion, DNA synthesis rates of colon epithelial cells can be measured directly in vivo using stable-isotope labeling. Potential applications in humans include use as a biomarker for cancer chemoprevention studies.


Subject(s)
Colon/cytology , DNA/biosynthesis , Gas Chromatography-Mass Spectrometry , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anticarcinogenic Agents/pharmacology , Aspirin/pharmacology , Azoxymethane/pharmacology , Body Water/chemistry , Bromodeoxyuridine/analysis , Cell Cycle , Cell Proliferation , Cholic Acid/administration & dosage , Cholic Acid/pharmacology , Colonic Neoplasms/etiology , Deuterium/analysis , Epithelial Cells/metabolism , Kinetics , Male , Rats , Rats, Sprague-Dawley
8.
J Biol Chem ; 279(48): 49940-7, 2004 Nov 26.
Article in English | MEDLINE | ID: mdl-15385549

ABSTRACT

Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.


Subject(s)
Deuterium Oxide/metabolism , Microtubules/metabolism , Tubulin/metabolism , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Dimerization , Humans , Mice , Mice, Nude , Microtubules/drug effects , Neoplasms/drug therapy , Neoplasms/surgery , Paclitaxel/pharmacology , Tubulin/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...