Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Sci Rep ; 11(1): 23379, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34862448

ABSTRACT

A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19. These data have significant safety implications for SARS-CoV-2 diagnostic testing and support the design and evidence-based risk assessment of these procedures.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Serological Testing/methods , SARS-CoV-2/drug effects , Acetamides , Buffers , COVID-19/diagnosis , COVID-19/virology , Fluoroacetates , Guanidine/adverse effects , Humans , Virus Inactivation/drug effects
3.
J Gen Virol ; 102(4)2021 04.
Article in English | MEDLINE | ID: mdl-33913803

ABSTRACT

Infectious SARS-CoV-2 can be recovered from the oral cavities and saliva of COVID-19 patients with potential implications for disease transmission. Reducing viral load in patient saliva using antiviral mouthwashes may therefore have a role as a control measure in limiting virus spread, particularly in dental settings. Here, the efficacy of SARS-CoV-2 inactivation by seven commercially available mouthwashes with a range of active ingredients were evaluated in vitro. We demonstrate ≥4.1 to ≥5.5 log10 reduction in SARS-CoV-2 titre following a 1 min treatment with commercially available mouthwashes containing 0.01-0.02 % stabilised hypochlorous acid or 0.58 % povidone iodine, and non-specialist mouthwashes with both alcohol-based and alcohol-free formulations designed for home use. In contrast, products containing 1.5 % hydrogen peroxide or 0.2 % chlorhexidine gluconate were ineffective against SARS-CoV-2 in these tests. This study contributes to the growing body of evidence surrounding virucidal efficacy of mouthwashes/oral rinses against SARS-CoV-2, and has important applications in reducing risk associated with aerosol generating procedures in dentistry and potentially for infection control more widely.


Subject(s)
Antiviral Agents/pharmacology , Mouthwashes/pharmacology , SARS-CoV-2/drug effects , Virus Inactivation/drug effects , COVID-19/prevention & control , COVID-19/transmission , Cell Survival/drug effects , Humans , Mouth/virology , Viral Load/drug effects
4.
J Virol Methods ; 290: 114087, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33515663

ABSTRACT

The development of safe diagnostic protocols for working with SARS-CoV-2 clinical samples at Biosafety Level 2 (BSL2) requires understanding of the effect of heat-treatment on SARS-CoV-2 viability and downstream RT-PCR sensitivity. In this study heating SARS-CoV-2/England/2/2020 to 56 °C and 60 °C for 15, 30 and 60 min reduced the virus titre by between 2.1 and 4.9 log10 pfu/mL (as determined by plaque assay). Complete inactivation did not occur and there was significant variability between replicates. Viable virus was detected by plaque assay after heat-treatment at 80 °C for 15 or 30 min but not 60 or 90 min. After heat-treatment at 80 °C for 60 min infectious virus was only detected by more sensitive virus culture. No viable virus was detected after heating to 80 °C for 90 min or 95 °C for 1 or 5 min. RT-PCR sensitivity was not compromised by heating to 56 °C and 60 °C. However, RT-PCR sensitivity was reduced (≥3 Ct value increase) after heating the virus to 80 °C for 30 min or longer, or 95 °C for 1 or 5 min. In summary we found that the efficacy of heat-inactivation varies greatly depending on temperature and duration. Local validation of heat-inactivation and its effects downstream is therefore essential for molecular testing.


Subject(s)
SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Virus Inactivation , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Hot Temperature , Humans , Sensitivity and Specificity , Time Factors
5.
J Clin Microbiol ; 58(11)2020 10 21.
Article in English | MEDLINE | ID: mdl-32839250

ABSTRACT

The COVID-19 pandemic has necessitated a multifaceted rapid response by the scientific community, bringing researchers, health officials, and industry together to address the ongoing public health emergency. To meet this challenge, participants need an informed approach for working safely with the etiological agent, the novel human coronavirus SARS-CoV-2. Work with infectious SARS-CoV-2 is currently restricted to high-containment laboratories, but material can be handled at a lower containment level after inactivation. Given the wide array of inactivation reagents that are being used in laboratories during this pandemic, it is vital that their effectiveness is thoroughly investigated. Here, we evaluated a total of 23 commercial reagents designed for clinical sample transportation, nucleic acid extraction, and virus inactivation for their ability to inactivate SARS-CoV-2, as well as seven other common chemicals, including detergents and fixatives. As part of this study, we have also tested five filtration matrices for their effectiveness at removing the cytotoxic elements of each reagent, permitting accurate determination of levels of infectious virus remaining following treatment. In addition to providing critical data informing inactivation methods and risk assessments for diagnostic and research laboratories working with SARS-CoV-2, these data provide a framework for other laboratories to validate their inactivation processes and to guide similar studies for other pathogens.


Subject(s)
Betacoronavirus/drug effects , Indicators and Reagents/pharmacology , Virus Inactivation/drug effects , Animals , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Cell Survival/drug effects , Chlorocebus aethiops , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Filtration/instrumentation , Humans , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells
6.
PLoS One ; 14(3): e0212113, 2019.
Article in English | MEDLINE | ID: mdl-30845203

ABSTRACT

BACKGROUND: Without an effective vaccine, as was the case early in the 2014-2016 Ebola Outbreak in West Africa, disease control depends entirely on interrupting transmission through early disease detection and prompt patient isolation. Lateral Flow Immunoassays (LFI) are a potential supplement to centralized reference laboratory testing for the early diagnosis of Ebola Virus Disease (EVD). The goal of this study was to assess the performance of commercially available simple and rapid antigen detection LFIs, submitted for review to the WHO via the Emergency Use Assessment and Listing procedure. The study was performed in an Ebola Treatment Centre laboratory involved in EVD testing in Sierra Leone. In light of the current Ebola outbreak in May 2018 in the Democratic Republic of Congo, which highlights the lack of clarity in the global health community about appropriate Ebola diagnostics, our findings are increasingly critical. METHODS: A cross-sectional study was conducted to assess comparative performance of four LFIs for detecting EVD. LFIs were assessed against the same 328 plasma samples and 100 whole EDTA blood samples, using the altona RealStar Filovirus Screen real-time RT-PCR as the bench mark assay. The performance of the Public Health England (PHE) in-house Zaire ebolavirus-specific real time RT-PCR Trombley assay was concurrently assessed. Statistical analysis using generalized estimating equations was conducted to compare LFI performance. FINDINGS: Sensitivity and specificity varied between the LFIs, with specificity found to be significantly higher for whole EDTA blood samples compared to plasma samples in at least 2 LFIs (P≤0.003). Using the altona RT-PCR assay as the bench mark, sensitivities on plasma samples ranged from 79.53% (101/127, 95% CI: 71.46-86.17%) for the DEDIATEST EBOLA (SD Biosensor) to 98.43% (125/127, 95% CI: 94.43-99.81%) for the One step Ebola test (Intec). Specificities ranged from 80.20% (158/197, 95% CI: 74.07-88.60%) for plasma samples using the ReEBOV Antigen test Kit (Corgenix) to 100.00% (98/98, 95% CI: 96.31-100.00%) for whole blood samples using the DEDIATEST EBOLA (SD Biosensor) and SD Ebola Zaire Ag (SD Biosensor). Results also showed the Trombley RT-PCR assay had a lower limit of detection than the altona assay, with some LFIs having higher sensitivity than the altona assay when the Trombley assay was the bench mark. INTERPRETATION: All of the tested EVD LFIs may be considered suitable for use in an outbreak situation (i.e. rule out testing in communities), although they had variable performance characteristics, with none possessing both high sensitivity and specificity. The non-commercial Trombley Zaire ebolavirus RT-PCR assay warrants further investigation, as it appeared more sensitive than the current gold standard, the altona Filovirus Screen RT-PCR assay.


Subject(s)
Hemorrhagic Fever, Ebola/diagnosis , Immunoassay/methods , Adult , Antigens, Viral/blood , Cross-Sectional Studies , Disease Outbreaks/prevention & control , Ebolavirus/genetics , Epidemics , Female , Hemorrhagic Fever, Ebola/epidemiology , Humans , Immunologic Tests , Male , Point-of-Care Systems , RNA, Viral/blood , Reagent Kits, Diagnostic/virology , Sensitivity and Specificity , Sierra Leone
7.
Nat Microbiol ; 3(11): 1234-1242, 2018 11.
Article in English | MEDLINE | ID: mdl-30224800

ABSTRACT

The molecular processes that determine the outcome of influenza virus infection in humans are multifactorial and involve a complex interplay between host, viral and bacterial factors1. However, it is generally accepted that a strong innate immune dysregulation known as 'cytokine storm' contributes to the pathology of infections with the 1918 H1N1 pandemic or the highly pathogenic avian influenza viruses of the H5N1 subtype2-4. The RNA sensor retinoic acid-inducible gene I (RIG-I) plays an important role in sensing viral infection and initiating a signalling cascade that leads to interferon expression5. Here, we show that short aberrant RNAs (mini viral RNAs (mvRNAs)), produced by the viral RNA polymerase during the replication of the viral RNA genome, bind to and activate RIG-I and lead to the expression of interferon-ß. We find that erroneous polymerase activity, dysregulation of viral RNA replication or the presence of avian-specific amino acids underlie mvRNA generation and cytokine expression in mammalian cells. By deep sequencing RNA samples from the lungs of ferrets infected with influenza viruses, we show that mvRNAs are generated during infection in vivo. We propose that mvRNAs act as the main agonists of RIG-I during influenza virus infection.


Subject(s)
DEAD Box Protein 58/metabolism , Immunity, Innate/immunology , Influenza A virus/physiology , Orthomyxoviridae Infections/immunology , RNA, Viral/metabolism , Animals , Cell Line , Cytokines/metabolism , DEAD Box Protein 58/genetics , Female , Ferrets , Influenza A virus/genetics , Interferon-beta/genetics , Interferon-beta/metabolism , Male , Mutation , Viral Proteins/genetics , Virus Replication
8.
Virus Res ; 209: 11-22, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-25678267

ABSTRACT

The host interferon (IFN) response represents one of the first barriers that influenza viruses must surmount in order to establish an infection. Many advances have been made in recent years in understanding the interactions between influenza viruses and the interferon system. In this review, we summarise recent work regarding activation of the type I IFN response by influenza viruses, including attempts to identify the viral RNA responsible for IFN induction, the stage of the virus life cycle at which it is generated and the role of defective viruses in this process.


Subject(s)
Host-Pathogen Interactions , Immunity, Innate , Interferon Type I/metabolism , Orthomyxoviridae/immunology , Orthomyxoviridae/physiology , Defective Viruses/immunology , Humans
9.
PLoS One ; 9(6): e98668, 2014.
Article in English | MEDLINE | ID: mdl-24887174

ABSTRACT

The NS1 protein of influenza A viruses is the dedicated viral interferon (IFN)-antagonist. Viruses lacking NS1 protein expression cannot multiply in normal cells but are viable in cells deficient in their ability to produce or respond to IFN. Here we report an unbiased mutagenesis approach to identify positions in the influenza A NS1 protein that modulate the IFN response upon infection. A random library of virus ribonucleoproteins containing circa 40 000 point mutants in NS1 were transferred to infectious virus and amplified in MDCK cells unable to respond to interferon. Viruses that activated the interferon (IFN) response were subsequently selected by their ability to induce expression of green-fluorescent protein (GFP) following infection of A549 cells bearing an IFN promoter-dependent GFP gene. Using this approach we isolated individual mutant viruses that replicate to high titers in IFN-compromised cells but, compared to wild type viruses, induced higher levels of IFN in IFN-competent cells and had a reduced capacity to counteract exogenous IFN. Most of these viruses contained not previously reported NS1 mutations within either the RNA-binding domain, the effector domain or the linker region between them. These results indicate that subtle alterations in NS1 can reduce its effectiveness as an IFN antagonist without affecting the intrinsic capacity of the virus to multiply. The general approach reported here may facilitate the generation of replication-proficient, IFN-inducing virus mutants, that potentially could be developed as attenuated vaccines against a variety of viruses.


Subject(s)
Influenza A virus/physiology , Interferons/biosynthesis , Point Mutation , Viral Nonstructural Proteins/genetics , Virus Replication , Animals , Base Sequence , Cell Line , DNA Primers , Dogs , Green Fluorescent Proteins/genetics , Humans , Immunity, Innate , Influenza A virus/genetics , Interferons/genetics , Promoter Regions, Genetic
10.
J Virol ; 88(9): 4632-46, 2014 May.
Article in English | MEDLINE | ID: mdl-24574395

ABSTRACT

UNLABELLED: Influenza A viruses counteract the cellular innate immune response at several steps, including blocking RIG I-dependent activation of interferon (IFN) transcription, interferon (IFN)-dependent upregulation of IFN-stimulated genes (ISGs), and the activity of various ISG products; the multifunctional NS1 protein is responsible for most of these activities. To determine the importance of other viral genes in the interplay between the virus and the host IFN response, we characterized populations and selected mutants of wild-type viruses selected by passage through non-IFN-responsive cells. We reasoned that, by allowing replication to occur in the absence of the selection pressure exerted by IFN, the virus could mutate at positions that would normally be restricted and could thus find new optimal sequence solutions. Deep sequencing of selected virus populations and individual virus mutants indicated that nonsynonymous mutations occurred at many phylogenetically conserved positions in nearly all virus genes. Most individual mutants selected for further characterization induced IFN and ISGs and were unable to counteract the effects of exogenous IFN, yet only one contained a mutation in NS1. The relevance of these mutations for the virus phenotype was verified by reverse genetics. Of note, several virus mutants expressing intact NS1 proteins exhibited alterations in the M1/M2 proteins and accumulated large amounts of deleted genomic RNAs but nonetheless replicated to high titers. This suggests that the overproduction of IFN inducers by these viruses can override NS1-mediated IFN modulation. Altogether, the results suggest that influenza viruses replicating in IFN-competent cells have tuned their complete genomes to evade the cellular innate immune system and that serial replication in non-IFN-responsive cells allows the virus to relax from these constraints and find a new genome consensus within its sequence space. IMPORTANCE: In natural virus infections, the production of interferons leads to an antiviral state in cells that effectively limits virus replication. The interferon response places considerable selection pressure on viruses, and they have evolved a variety of ways to evade it. Although the influenza virus NS1 protein is a powerful interferon antagonist, the contributions of other viral genes to interferon evasion have not been well characterized. Here, we examined the effects of alleviating the selection pressure exerted by interferon by serially passaging influenza viruses in cells unable to respond to interferon. Viruses that grew to high titers had mutations at many normally conserved positions in nearly all genes and were not restricted to the NS1 gene. Our results demonstrate that influenza viruses have fine-tuned their entire genomes to evade the interferon response, and by removing interferon-mediated constraints, viruses can mutate at genome positions normally restricted by the interferon response.


Subject(s)
Host-Pathogen Interactions , Influenza A virus/immunology , Interferons/genetics , Interferons/metabolism , Viral Proteins/immunology , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Humans , Influenza A virus/genetics , Mutation , Reverse Genetics , Selection, Genetic , Serial Passage , Viral Proteins/genetics
11.
J Virol ; 88(8): 3942-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24478437

ABSTRACT

UNLABELLED: We have examined the requirements for virus transcription and replication and thus the roles of input and progeny genomes in the generation of interferon (IFN)-inducing pathogen-associated molecular patterns (PAMPs) by influenza A viruses using inhibitors of these processes. Using IFN regulatory factor 3 (IRF3) phosphorylation as a marker of activation of the IFN induction cascade that occurs upstream of the IFN-ß promoter, we demonstrate strong activation of the IFN induction cascade in A549 cells infected with a variety of influenza A viruses in the presence of cycloheximide or nucleoprotein (NP) small interfering RNA (siRNA), which inhibits viral protein synthesis and thus complementary ribonucleoprotein (cRNP) and progeny viral RNP (vRNP) synthesis. In contrast, activation of the IFN induction cascade by influenza viruses was very effectively abrogated by treatment with actinomycin D and other transcription inhibitors, which correlated with the inhibition of the synthesis of all viral RNA species. Furthermore, 5,6-dichloro-1-ß-d-ribofuranosyl-benzimidazole, an inhibitor that prevents viral RNA export from the nucleus, was also a potent inhibitor of IRF3 activation; thus, both viral RNA synthesis and nuclear export are required for IFN induction by influenza A viruses. While the exact nature of the viral PAMPs remains to be determined, our data suggest that in this experimental system the major influenza A virus PAMPs are distinct from those of incoming genomes or progeny vRNPs. IMPORTANCE: The host interferon system exerts an extremely potent antiviral response that efficiently restricts virus replication and spread; the interferon response can thus dictate the outcome of a virus infection, and it is therefore important to understand how viruses induce interferon. Both input and progeny genomes have been linked to interferon induction by influenza viruses. However, our experiments in tissue culture cells show that viral RNA synthesis and nuclear export are required to activate this response. Furthermore, the interferon induction cascade is activated under conditions in which the synthesis of progeny genomes is inhibited. Therefore, in tissue culture cells, input and progeny genomes are not the predominant inducers of interferon generated by influenza A viruses; the major viral interferon inducer(s) still remains to be identified.


Subject(s)
Cell Nucleus/virology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Influenza, Human/virology , Interferon Regulatory Factor-3/genetics , Interferon-beta/metabolism , RNA, Viral/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Cell Nucleus/metabolism , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon-beta/genetics , RNA, Viral/genetics , Up-Regulation
12.
J Virol ; 87(23): 13053-8, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24049170

ABSTRACT

The induction of an interferon-induced antiviral state is a powerful cellular response against viral infection that limits viral spread. Here, we show that a preexisting antiviral state inhibits the replication of influenza A viruses in human A549 cells by preventing transport of the viral genome to the nucleus and that the interferon-induced MxA protein is necessary but not sufficient for this process. This represents a previously unreported antiviral function of MxA against influenza A virus infection.


Subject(s)
Cytoplasm/virology , Genome, Viral , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/metabolism , Influenza, Human/virology , Interferon-alpha/metabolism , Myxovirus Resistance Proteins/metabolism , Cell Line , Cell Nucleus/metabolism , Cell Nucleus/virology , Cytoplasm/metabolism , Down-Regulation , Host-Pathogen Interactions , Humans , Influenza A Virus, H3N2 Subtype/physiology , Influenza, Human/genetics , Myxovirus Resistance Proteins/genetics
13.
Proc Natl Acad Sci U S A ; 107(5): 1954-9, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133840

ABSTRACT

Seasonal epidemics and periodic worldwide pandemics caused by influenza A viruses are of continuous concern. The viral nonstructural (NS1) protein is a multifunctional virulence factor that antagonizes several host innate immune defenses during infection. NS1 also directly stimulates class IA phosphoinositide 3-kinase (PI3K) signaling, an essential cell survival pathway commonly mutated in human cancers. Here, we present a 2.3-A resolution crystal structure of the NS1 effector domain in complex with the inter-SH2 (coiled-coil) domain of p85beta, a regulatory subunit of PI3K. Our data emphasize the remarkable isoform specificity of this interaction, and provide insights into the mechanism by which NS1 activates the PI3K (p85beta:p110) holoenzyme. A model of the NS1:PI3K heterotrimeric complex reveals that NS1 uses the coiled-coil as a structural tether to sterically prevent normal inhibitory contacts between the N-terminal SH2 domain of p85beta and the p110 catalytic subunit. Furthermore, in this model, NS1 makes extensive contacts with the C2/kinase domains of p110, and a small acidic alpha-helix of NS1 sits adjacent to the highly basic activation loop of the enzyme. During infection, a recombinant influenza A virus expressing NS1 with charge-disruption mutations in this acidic alpha-helix is unable to stimulate the production of phosphatidylinositol 3,4,5-trisphosphate or the phosphorylation of Akt. Despite this, the charge-disruption mutations in NS1 do not affect its ability to interact with the p85beta inter-SH2 domain in vitro. Overall, these data suggest that both direct binding of NS1 to p85beta (resulting in repositioning of the N-terminal SH2 domain) and possible NS1:p110 contacts contribute to PI3K activation.


Subject(s)
Influenza A Virus, H1N1 Subtype/metabolism , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Animals , Base Sequence , Catalytic Domain , Cattle , Cell Line , Crystallography, X-Ray , DNA Primers/genetics , Dogs , Enzyme Activation , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Models, Molecular , Multiprotein Complexes , Mutagenesis, Site-Directed , Protein Interaction Domains and Motifs , Viral Nonstructural Proteins/genetics , src Homology Domains
14.
Virology ; 396(1): 94-105, 2010 Jan 05.
Article in English | MEDLINE | ID: mdl-19880155

ABSTRACT

A panel of influenza A viruses encoding mutant NS1 proteins was created in which a number of NS1 functions, including interactions with dsRNA, PI3K, CPSF30 and PKR, were inhibited. Surprisingly, given previous reports that NS1 activates PI3K to prevent apoptosis, the mutant viruses rUd-Y89F and rUd-P164/7A that fail to activate PI3K did not induce any more apoptosis than wild-type virus in MRC-5 and A549 cells, even though these cells are highly sensitive to inducers of apoptosis. Induction of cell death by the apoptogenic rUd-184-8(P) virus could not be prevented by serum-mediated activation of PI3K/Akt. Neither infection of MRC-5 or A549 cells with wild-type virus nor constitutive expression of NS1 prevented cell death caused by apoptosis inducers, suggesting that NS1 is not directly anti-apoptotic. Our data suggest that the loss of a functionally intact NS1 protein promotes apoptosis, but this is not due to an inability to activate PI3K.


Subject(s)
Apoptosis , Phosphatidylinositol 3-Kinases/metabolism , Viral Nonstructural Proteins/physiology , Animals , Cell Line , Chromones/pharmacology , Cleavage And Polyadenylation Specificity Factor/physiology , Enzyme Activation , Humans , Interferons/biosynthesis , Morpholines/pharmacology , eIF-2 Kinase/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...