Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 23(12): 1985-95, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24026177

ABSTRACT

Selective breeding of dogs by humans has generated extraordinary diversity in body size. A number of multibreed analyses have been undertaken to identify the genetic basis of this diversity. We analyzed four loci discovered in a previous genome-wide association study that used 60,968 SNPs to identify size-associated genomic intervals, which were too large to assign causative roles to genes. First, we performed fine-mapping to define critical intervals that included the candidate genes GHR, HMGA2, SMAD2, and STC2, identifying five highly associated markers at the four loci. We hypothesize that three of the variants are likely to be causative. We then genotyped each marker, together with previously reported size-associated variants in the IGF1 and IGF1R genes, on a panel of 500 domestic dogs from 93 breeds, and identified the ancestral allele by genotyping the same markers on 30 wild canids. We observed that the derived alleles at all markers correlated with reduced body size, and smaller dogs are more likely to carry derived alleles at multiple markers. However, breeds are not generally fixed at all markers; multiple combinations of genotypes are found within most breeds. Finally, we show that 46%-52.5% of the variance in body size of dog breeds can be explained by seven markers in proximity to exceptional candidate genes. Among breeds with standard weights <41 kg (90 lb), the genotypes accounted for 64.3% of variance in weight. This work advances our understanding of mammalian growth by describing genetic contributions to canine size determination in non-giant dog breeds.


Subject(s)
Body Size/genetics , Breeding , Dogs/genetics , Genetic Variation , Alleles , Animals , Genetic Markers , Genome , Genome-Wide Association Study , Genotype , Glycoproteins/genetics , HMGA2 Protein/genetics , Insulin-Like Growth Factor I/genetics , Molecular Sequence Data , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Receptor, IGF Type 1/genetics , Receptors, Somatotropin/genetics , Smad2 Protein/genetics
2.
J Vet Cardiol ; 14(1): 19-29, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22356836

ABSTRACT

Myxomatous mitral valve disease (MMVD) is the most commonly diagnosed cardiovascular disease in the dog accounting for more than 70% of all cardiovascular disease in dogs. As are most canine diseases with genetic underpinnings, risk of MMVD is greatly increased in a subset of breeds. What is uncommon is that the vast majority of the breeds at elevated risk for MMVD are small or toy breeds with average adult weights under 9 kg. These breeds appear to have little in common other than their diminutive size. In the following review we propose a number of mechanisms by which relatively unrelated small breeds may have developed a predisposition for chronic valvular disorders. Although factors such as age are key in the expression of MMVD, taking a comprehensive look at the commonalities, as well as the differences, between the susceptible breeds may assist in finding the causal variants responsible for MMVD and translating them to improved treatments for both dogs and humans.


Subject(s)
Dog Diseases/pathology , Mitral Valve Prolapse/pathology , Animals , Body Size , Dogs
SELECTION OF CITATIONS
SEARCH DETAIL
...