Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Trials ; 24(1): 255, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-37016394

ABSTRACT

BACKGROUND: Opioids accounted for 75% of drug overdoses in the USA in 2020, with rural states particularly impacted by the opioid crisis. While medication-assisted treatment (MAT) with Suboxone remains one of the more efficacious treatments for opioid use disorder (OUD), approximately 40% of people receiving Suboxone for outpatient MAT for OUD (MOUD) relapse within the first 6 months of treatment. We developed the smartphone app-based intervention OptiMAT as an adjunctive intervention to improve MOUD outcomes. The aims of this study are to (1) evaluate the efficacy of adjunctive OptiMAT use in reducing opioid misuse among people receiving MOUD and (2) evaluate the role of specific OptiMAT features in reducing opioid misuse, including the use of GPS-driven just-in-time intervention. METHODS: We will conduct a two-arm, single-blind, randomized controlled trial of adults receiving outpatient MOUD in the greater Little Rock AR area. Participants are English-speaking adults ages 18 or older recently enrolled in outpatient MOUD at one of our participating study clinics. Participants will be allocated via 1:1 randomized block design to (1) MOUD with adjunctive use of OptiMAT (MOUD+OptiMAT) or (2) MOUD without OptiMAT (MOUD-only). Our blinded research statistician will evaluate differences between the two groups in opioid misuse (as determined by quantitative urinalysis conducted by clinical lab staff blinded to group membership) during the 6-months following study enrolment. Secondary analyses will evaluate if OptiMAT-usage patterns within the MOUD+OptiMAT group predict opioid misuse or continued abstinence. DISCUSSION: This study will test if adjunctive use of OptiMAT improve MOUD outcomes. Study findings could lead to expansion of OptiMAT into rural clinical settings, and the identification of OptiMAT features which best predict positive clinical outcome could lead to refinement of this and similar smartphone app-based interventions. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT05336188 , registered March 21, 2022.


Subject(s)
Opioid-Related Disorders , Smartphone , Adult , Humans , Analgesics, Opioid/adverse effects , Buprenorphine, Naloxone Drug Combination , Opiate Substitution Treatment , Opioid-Related Disorders/diagnosis , Opioid-Related Disorders/drug therapy , Randomized Controlled Trials as Topic , Single-Blind Method , Treatment Outcome
2.
Res Sq ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824884

ABSTRACT

Background: Opioids accounted for 75% of drug overdoses in the United States in 2020, with rural states particularly impacted by the opioid crisis. While medication assisted treatment (MAT) with Suboxone remains one of the more efficacious treatments for opioid use disorder (OUD), approximately 40% of people receiving Suboxone for outpatient MAT for OUD (MOUD) relapse within the first 6 months of treatment. We developed the smartphone app-based intervention OptiMAT as an adjunctive intervention to improve MOUD outcomes. The aims of this study are to (1) evaluate the efficacy of adjunctive OptiMAT use in reducing opioid misuse among people receiving MOUD; and (2) evaluate the role of specific OpitMAT features in reducing opioid misuse, including the use of GPS-driven just-in-time intervention. Methods: We will conduct a two-arm, single-blind, randomized controlled trial of adults receiving outpatient MOUD in the greater Little Rock AR area. Participants are English-speaking adults ages 18 or older recently enrolled in outpatient MOUD at one of our participating study clinics. Participants will be allocated via 1:1 randomized block design to (1) MOUD with adjunctive use of OptiMAT (MOUD+OptiMAT) or (2) MOUD without OptiMAT (MOUD-only). Our blinded research statistician will evaluate differences between the two groups in opioid misuse (as determined by quantitative urinalysis conducted by clinical lab staff blinded to group membership) during the 6-months following study enrolment. Secondary analyses will evaluate if OptiMAT-usage patterns within the MOUD+OptiMAT group predict opioid misuse or continued abstinence. Discussion: This study will test if adjunctive use of OptiMAT improve MOUD outcomes. Study findings could lead to expansion of OptiMAT into rural clinical settings, and the identification of OptiMAT features which best predict positive clinical outcome could lead to refinement of this and similar smartphone appbased interventions. Trial registration: ClinicalTrials.gov identifier: NCT05336188, registered March 21, 2022, https://clinicaltrials.gov/ct2/show/NCT05336188.

3.
Sci Rep ; 10(1): 9298, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32518277

ABSTRACT

The importance of affect processing to human behavior has long driven researchers to pursue its measurement. In this study, we compared the relative fidelity of measurements of neural activation and physiology (i.e., heart rate change) in detecting affective valence induction across a broad continuum of conveyed affective valence. We combined intra-subject neural activation based multivariate predictions of affective valence with measures of heart rate (HR) deceleration to predict predefined normative affect rating scores for stimuli drawn from the International Affective Picture System (IAPS) in a population (n = 50) of healthy adults. In sum, we found that patterns of neural activation and HR deceleration significantly, and uniquely, explain the variance in normative valent scores associated with IAPS stimuli; however, we also found that patterns of neural activation explain a significantly greater proportion of that variance. These traits persisted across a range of stimulus sets, differing by the polar-extremity of their positively and negatively valent subsets, which represent the positively and negatively valent polar-extremity of stimulus sets reported in the literature. Overall, these findings support the acquisition of heart rate deceleration concurrently with fMRI to provide convergent validation of induced affect processing in the dimension of affective valence.


Subject(s)
Affect/physiology , Behavior/physiology , Brain Mapping/methods , Heart Rate/physiology , Neuroimaging/methods , Adolescent , Adult , Brain/diagnostic imaging , Brain/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
4.
Eur Arch Psychiatry Clin Neurosci ; 270(5): 619-631, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30903270

ABSTRACT

Low social integration is commonly described in acutely suicidal individuals. Neural mechanisms underlying low social integration are poorly understood in depressed and suicidal patients. We sought to characterize the neural response to low social integration in acutely suicidal patients. Adult depressed patients within 3 days of a suicide attempt (n = 10), depressed patients with suicidal ideation (n = 9), non-suicidal depressed patients (n = 15), and healthy controls (N = 18) were administered the Cyberball Game while undergoing functional magnetic resonance imaging. We used complementary functional connectivity and region of interest data analysis approaches. There were no group differences in functional connectivity within neural network involving the pain matrix, nor in insula neural activity or the insula during either social inclusion. Superior anterior insula activity exhibited an inverted U-shaped curve across the suicide risk spectrum during social inclusion. Superior insula activity during social inclusion correlated with depression severity and psychological pain. Dorsal anterior cingulate cortex activity during social exclusion correlated with physical pain severity. Neural responses in the anterior insula significantly correlated with depression severity and with psychological pain during social inclusion, whereas dACC activity significantly correlated with physical pain during social exclusion. Recent suicidal behavior seems associated with a distinct neural response to social exclusion independently of presence of depression or suicidal thoughts.


Subject(s)
Brain Mapping , Cerebral Cortex/physiopathology , Depressive Disorder/physiopathology , Social Inclusion , Social Isolation , Suicidal Ideation , Suicide, Attempted , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Connectome , Depressive Disorder/diagnostic imaging , Female , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Risk Factors , Severity of Illness Index , Young Adult
5.
PLoS One ; 13(11): e0207352, 2018.
Article in English | MEDLINE | ID: mdl-30475812

ABSTRACT

Task-related functional magnetic resonance imaging (fMRI) is a widely-used tool for studying the neural processing correlates of human behavior in both healthy and clinical populations. There is growing interest in mapping individual differences in fMRI task behavior and neural responses. By utilizing neuroadaptive task designs accounting for such individual differences, task durations can be personalized to potentially optimize neuroimaging study outcomes (e.g., classification of task-related brain states). To test this hypothesis, we first retrospectively tracked the volume-by-volume changes of beta weights generated from general linear models (GLM) for 67 adult subjects performing a stop-signal task (SST). We then modeled the convergence of the volume-by-volume changes of beta weights according to their exponential decay (ED) in units of half-life. Our results showed significant differences in beta weight convergence estimates of optimal stopping times (OSTs) between go following successful stop trials and failed stop trials for both cocaine dependent (CD) and control group (Con), and between go following successful stop trials and go following failed stop trials for Con group. Further, we implemented support vector machine (SVM) classification for 67 CD/Con labeled subjects and compared the classification accuracies of fMRI-based features derived from (1) the full fMRI task versus (2) the fMRI task truncated to multiples of the unit of half-life. Among the computed binary classification accuracies, two types of task durations based on 2 half-lives significantly outperformed the accuracies using fully acquired trials, supporting this length as the OST for the SST. In conclusion, we demonstrate the potential of a neuroadaptive task design that can be widely applied to personalizing other task-based fMRI experiments in either dynamic real-time fMRI applications or within fMRI preprocessing pipelines.


Subject(s)
Brain , Magnetic Resonance Imaging , Models, Neurological , Neuroimaging , Problem Solving/physiology , Support Vector Machine , Adolescent , Adult , Brain/diagnostic imaging , Brain/physiology , Female , Humans , Male , Middle Aged
6.
J Clin Psychiatry ; 79(4)2018 07 10.
Article in English | MEDLINE | ID: mdl-29995357

ABSTRACT

OBJECTIVE: A major target in suicide prevention is interrupting the progression from suicidal thoughts to action. Use of complex algorithms in large samples has identified individuals at very high risk for suicide. We tested the ability of data-driven pattern classification analysis of brain functional connectivity to differentiate recent suicide attempters from patients with suicidal ideation. METHODS: We performed a cross-sectional study using resting-state functional magnetic resonance imaging in depressed inpatients and outpatients of both sexes recruited from a university hospital between March 2014 and June 2016: recent suicide Attempters within 3 days of an attempt (n = 10), Suicidal Ideators (n = 9), Depressed Non-Suicidal Controls (n = 17), and Healthy Controls (n = 18). All depressed patients fulfilled DSM-IV-TR criteria for major depressive episode and either major depressive disorder, bipolar disorder, or depression not otherwise specified. A subset of suicide attempters (n = 7) were rescanned within 7 days. We used a support vector machine data-driven neural pattern classification analysis of resting-state functional connectivity to characterize recent suicide attempters and then tested the classifier's specificity. RESULTS: A binary classifier trained to discriminate patterns of resting-state functional connectivity robustly differentiated Suicide Attempters from Suicidal Ideators (mean accuracy = 0.788, signed rank test: P = .002; null hypothesis: area under the curve = 0.5), with distinct functional connectivity between the default mode and the limbic, salience, and central executive networks. The classifier did not discriminate stable Suicide Attempters from Suicidal Ideators (mean accuracy = 0.58, P = .33) or presence from absence of lifetime suicidal behavior (mean accuracy = 0.543, P = .348) and was not improved by modeling clinical variables (mean accuracy = 0.736, P = .002). CONCLUSIONS: Measures of intrinsic brain organization may have practical value as objective measures of suicide risk and its underlying mechanisms. Further incorporation of serum or cognitive markers and use of a prospective study design are needed to validate and refine the clinical relevance of this candidate biomarker of suicide risk.


Subject(s)
Bipolar Disorder/physiopathology , Brain/physiopathology , Depressive Disorder, Major/physiopathology , Suicidal Ideation , Suicide, Attempted , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Young Adult
7.
PLoS One ; 13(2): e0192318, 2018.
Article in English | MEDLINE | ID: mdl-29489856

ABSTRACT

Numerous data demonstrate that distracting emotional stimuli cause behavioral slowing (i.e. emotional conflict) and that behavior dynamically adapts to such distractors. However, the cognitive and neural mechanisms that mediate these behavioral findings are poorly understood. Several theoretical models have been developed that attempt to explain these phenomena, but these models have not been directly tested on human behavior nor compared. A potential tool to overcome this limitation is Hidden Markov Modeling (HMM), which is a computational approach to modeling indirectly observed systems. Here, we administered an emotional Stroop task to a sample of healthy adolescent girls (N = 24) during fMRI and used HMM to implement theoretical behavioral models. We then compared the model fits and tested for neural representations of the hidden states of the most supported model. We found that a modified variant of the model posited by Mathews et al. (1998) was most concordant with observed behavior and that brain activity was related to the model-based hidden states. Particularly, while the valences of the stimuli themselves were encoded primarily in the ventral visual cortex, the model-based detection of threatening targets was associated with increased activity in the bilateral anterior insula, while task effort (i.e. adaptation) was associated with reduction in the activity of these areas. These findings suggest that emotional target detection and adaptation are accomplished partly through increases and decreases, respectively, in the perceived immediate relevance of threatening cues and also demonstrate the efficacy of using HMM to apply theoretical models to human behavior.


Subject(s)
Emotions , Markov Chains , Adolescent , Female , Humans , Magnetic Resonance Imaging
8.
Behav Brain Res ; 332: 136-144, 2017 08 14.
Article in English | MEDLINE | ID: mdl-28551067

ABSTRACT

Reciprocity is central to human relationships and is strongly influenced by multiple factors including the nature of social exchanges and their attendant emotional reactions. Despite recent advances in the field, the neural processes involved in this modulation of reciprocal behavior by ongoing social interaction are poorly understood. We hypothesized that activity within a discrete set of neural networks including a putative moral cognitive neural network is associated with reciprocity behavior. Nineteen healthy adults underwent functional magnetic resonance imaging scanning while playing the trustee role in the Trust Game. Personality traits and moral development were assessed. Independent component analysis was used to identify task-related functional brain networks and assess their relationship to behavior. The saliency network (insula and anterior cingulate) was positively correlated with reciprocity behavior. A consistent array of brain regions supports the engagement of emotional, self-referential and planning processes during social reciprocity behavior.


Subject(s)
Altruism , Brain/physiology , Interpersonal Relations , Trust , Adolescent , Adult , Brain/diagnostic imaging , Brain Mapping , Female , Games, Experimental , Humans , Magnetic Resonance Imaging , Male , Morals , Neuropsychological Tests , Personality , Personality Tests , Regression Analysis , Surveys and Questionnaires , Trust/psychology , Young Adult
9.
J Int Neuropsychol Soc ; 20(7): 736-50, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24963641

ABSTRACT

The n-back task is a widely used neuroimaging paradigm for studying the neural basis of working memory (WM); however, its neuropsychometric properties have received little empirical investigation. The present study merged clinical neuropsychology and functional magnetic resonance imaging (fMRI) to explore the construct validity of the letter variant of the n-back task (LNB) and to further identify the task-evoked networks involved in WM. Construct validity of the LNB task was investigated using a bootstrapping approach to correlate LNB task performance across clinically validated neuropsychological measures of WM to establish convergent validity, as well as measures of related but distinct cognitive constructs (i.e., attention and short-term memory) to establish discriminant validity. Independent component analysis (ICA) identified brain networks active during the LNB task in 34 healthy control participants, and general linear modeling determined task-relatedness of these networks. Bootstrap correlation analyses revealed moderate to high correlations among measures expected to converge with LNB (|ρ|≥ 0.37) and weak correlations among measures expected to discriminate (|ρ|≤ 0.29), controlling for age and education. ICA identified 35 independent networks, 17 of which demonstrated engagement significantly related to task condition, controlling for reaction time variability. Of these, the bilateral frontoparietal networks, bilateral dorsolateral prefrontal cortices, bilateral superior parietal lobules including precuneus, and frontoinsular network were preferentially recruited by the 2-back condition compared to 0-back control condition, indicating WM involvement. These results support the use of the LNB as a measure of WM and confirm its use in probing the network-level neural correlates of WM processing.


Subject(s)
Brain Mapping , Brain/physiology , Cognition/physiology , Magnetic Resonance Imaging , Neuropsychological Tests , Adolescent , Adult , Brain/blood supply , Female , Humans , Image Processing, Computer-Assisted , Linear Models , Male , Middle Aged , Oxygen/blood , Young Adult
10.
Neuropsychopharmacology ; 39(5): 1135-47, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24196947

ABSTRACT

Cocaine and other drug dependencies are associated with significant attentional bias for drug use stimuli that represents a candidate cognitive marker of drug dependence and treatment outcomes. We explored, using fMRI, the role of discrete neural processing networks in the representation of individual differences in the drug attentional bias effect associated with cocaine dependence (AB-coc) using a word counting Stroop task with personalized cocaine use stimuli (cocStroop). The cocStroop behavioral and neural responses were further compared with those associated with a negative emotional word Stroop task (eStroop) and a neutral word counting Stroop task (cStroop). Brain-behavior correlations were explored using both network-level correlation analysis following independent component analysis (ICA) and voxel-level, brain-wide univariate correlation analysis. Variation in the attentional bias effect for cocaine use stimuli among cocaine-dependent men and women was related to the recruitment of two separate neural processing networks related to stimulus attention and salience attribution (inferior frontal-parietal-ventral insula), and the processing of the negative affective properties of cocaine stimuli (frontal-temporal-cingulate). Recruitment of a sensory-motor-dorsal insula network was negatively correlated with AB-coc and suggested a regulatory role related to the sensorimotor processing of cocaine stimuli. The attentional bias effect for cocaine stimuli and for negative affective word stimuli were significantly correlated across individuals, and both were correlated with the activity of the frontal-temporal-cingulate network. Functional connectivity for a single prefrontal-striatal-occipital network correlated with variation in general cognitive control (cStroop) that was unrelated to behavioral or neural network correlates of cocStroop- or eStroop-related attentional bias. A brain-wide mass univariate analysis demonstrated the significant correlation of individual attentional bias effect for cocaine stimuli with distributed activations in the frontal, occipitotemporal, parietal, cingulate, and premotor cortex. These findings support the involvement of multiple processes and brain networks in mediating individual differences in risk for relapse associated with drug dependence.


Subject(s)
Attention/physiology , Brain/physiopathology , Cocaine-Related Disorders/physiopathology , Cocaine-Related Disorders/psychology , Individuality , Adult , Brain Mapping/methods , Emotions/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Multivariate Analysis , Neural Pathways/physiopathology , Reaction Time , Stroop Test , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...