Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Genet Eng Biotechnol ; 19(1): 179, 2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34859356

ABSTRACT

BACKGROUND: Various bacteria promote plant root growth in the rhizosphere, as a measure of securing and enlarging their ecological niche. These interactions are mediated by plant growth regulators (PGRs) such as auxin, and indole-3-acetic acid (IAA) is one of the physiologically active auxin. In this study, we isolated an unusual bacterial strain from food process waste with high efficiency and demonstrated its effects on plant rooting and early-stage growth. RESULTS: The efficiency of this bacterial strain in producing IAA was 16.6 mg/L/h in Luria-Bertani broth containing 0.05% L-tryptophan (Trp) at room temperature (24 ± 2 °C). Its IAA production was highly dependent on the presence of precursor, Trp. This bacterium was identified as Ignatzschineria sp. by 16S rDNA sequencing. Its bacterial culture supernatant (BCS) enhanced plant root initiation, root growth, and plant growth in the early stages. The root mass formed BCS-treated in apple mint cuttings was twofold of that formed in the control. The root number and length were 46% and 18% higher, respectively, in BCS-treated chrysanthemum cuttings than in the control. CONCLUSIONS: These results show that the BCS of Ignatzschineria sp. CG20001 isolate obtained in this study can be used for agricultural applications. In addition, the novelty of this strain makes it a valuable genetic resource for biotechnological applications.

2.
Microorganisms ; 9(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072245

ABSTRACT

Significant quantities of food waste are accumulated globally on an annual basis, with approximately one-third of the food produced (equivalent to 1.3 billion tons of food) being wasted each year. A potential food waste recycling application is its utilization as a soil conditioner or fertilizer, whereby it increases the soil organic content and microbial biomass. This study evaluated the effectiveness of food waste as a microbial resource by analyzing the microbial community composition and isolating plant growth-promoting bacteria (PGPB) in food waste obtained from various sources. High-throughput sequencing identified 393 bacterial operational taxonomic units in the food process waste (FPW) samples. Moreover, the results showed that Firmicutes was abundant in the waste samples, followed by Bacteroidetes and Proteobacteria. A total of 92 bacteria were isolated from FPW. Moreover, the cultivable strains isolated from FPW belonged to the genus Bacillus, followed by Streptomyces and Proteus. Six isolated bacteria exhibited beneficial traits, including indole acetic acid production, antifungal resistance and extracellular lysis. FPW is a valuable microbial resource for isolation of PGPB, and its use as a fertilizer may enable a reduction in chemical fertilizer usage, thereby mitigating the corresponding adverse environmental impacts on sustainable crop development.

3.
J Microbiol Biotechnol ; 24(11): 1574-82, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25112313

ABSTRACT

Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHLdegrading bacteria were isolated from the sludge sample by enrichment culture. To identify the enzyme responsible for AHL degradation in QQ bacteria, AHL-degrading activities were analyzed using cell-free lysate, culture supernatant, and whole cells. Afipia sp. and Acinetobacter sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp. and Micrococcus sp. produced the extracellular QQ enzyme that was most likely to produce AHLacylase. AHL-degrading activity was observed in whole-cell assay with the Microbacterium sp. and Rhodococcus sp. strains. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.


Subject(s)
Acyl-Butyrolactones/metabolism , Bacteria/metabolism , Biofilms/growth & development , Quorum Sensing/physiology , Sewage/microbiology , Bacteria/isolation & purification
4.
Bioresour Technol ; 132: 197-201, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23411448

ABSTRACT

Chemo-enzymatic saccharification and bioethanol fermentation of the residual biomass of Dunaliella tertiolecta after lipid extraction for biodiesel production were investigated. HCl-catalyzed saccharification of the residual biomass at 121 °C for 15 min produced reducing sugars with a yield of 29.5% (w/w) based on the residual biomass dry weight. Various enzymes were evaluated for their ability to saccharify the residual biomass. Enzymatic saccharification using AMG 300 L produced 21.0 mg/mL of reducing sugar with a yield of 42.0% (w/w) based on the residual biomass at pH 5.5 and 55 °C. Bioethanol was produced from the enzymatic saccharification products without additional pretreatment by Saccharomyces cerevisiae with yields of 0.14 g ethanol/g residual biomass and 0.44 g ethanol/g glucose produced from the residual biomass. The waste residual biomass generated during microalgal biodiesel production could be used for the production of bioethanol to improve the economic feasibility of microalgal biorefinery.


Subject(s)
Carbohydrates/biosynthesis , Chlorophyta/chemistry , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Biofuels , Biomass , Cellulase/metabolism , Chlorophyta/metabolism , Chromatography, High Pressure Liquid , Fermentation , Glucan 1,4-alpha-Glucosidase/metabolism , Hydrogen-Ion Concentration , Lipids/isolation & purification , Multienzyme Complexes/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...