Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Rev ; 123(15): 9447-9496, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37429001

ABSTRACT

The tetrahydroisoquinoline (THIQ) natural products constitute one of the largest families of alkaloids and exhibit a wide range of structural diversity and biological activity. Ranging from simple THIQ natural products to complex trisTHIQ alkaloids such as the ecteinascidins, the chemical syntheses of these alkaloids and their analogs have been thoroughly investigated due to their intricate structural features and functionalities, as well as their high therapeutic potential. This review describes the general structure and biosynthesis of each family of THIQ alkaloids as well as recent advancements of the total synthesis of these natural products from 2002 to 2020. Recent chemical syntheses that have emerged harnessing novel, creative synthetic design, and modern chemical methodology will be highlighted. This review will hopefully serve as a guide for the unique strategies and tools used in the total synthesis of THIQ alkaloids, as well as address the longstanding challenges in their chemical and biosynthesis.


Subject(s)
Alkaloids , Biological Products , Tetrahydroisoquinolines , Alkaloids/chemistry , Tetrahydroisoquinolines/chemistry , Biological Products/chemistry
2.
Chem Sci ; 13(11): 3227-3232, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414874

ABSTRACT

The development of the first asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines is reported. Utilizing [Ir(cod)Cl]2 and a commercially available chiral Josiphos ligand, a variety of differentially substituted isoquinolines are hydrogenated to produce enantioenriched trans-tetrahydroisoquinolines in good yield with high levels of enantioselectivity. Directing group studies demonstrate that the hydroxymethyl functionality at the C1 position is critical for hydrogenation to favor the trans-diastereomer. Preliminary mechanistic studies reveal that non-coordinating chlorinated solvents and halide additives are crucial to enable trans-selectivity.

3.
J Am Chem Soc ; 143(41): 16890-16901, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34614361

ABSTRACT

Interest in therapeutic discovery typically drives the preparation of natural product analogs, but these undertakings contribute significant advances for synthetic chemistry as well. The need for a highly efficient and scalable synthetic route to a complex molecular scaffold for diversification frequently inspires new methodological development or unique application of existing methods on structurally intricate systems. Additionally, synthetic planning with an aim toward late-stage diversification can provide access to otherwise unavailable compounds or facilitate preparation of complex molecules with diverse patterns of substitution around a shared carbon framework. For these reasons among others, programs dedicated to the diversification of natural product frameworks and other complex molecular scaffolds have been increasing in popularity, a trend likely to continue given their fruitfulness and breadth of impact. In this Perspective, we discuss our experience using late-stage diversification as a guiding principle for the synthesis of natural product analogs and reflect on the impact such efforts have on the future of complex molecule synthesis.


Subject(s)
Biological Products
4.
ACS Catal ; 10(5): 3241-3248, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-34046244

ABSTRACT

The development of a general method utilizing a hydroxymethyl directing group for asymmetric hydrogenation of 1,3-disubstituted isoquinolines to provide chiral 1,2,3,4-tetrahydroisoquinolines is reported. The reaction, which utilizes [Ir(cod)Cl]2 and a commercially available chiral xyliphos ligand, proceeds in good yield with high levels of enantioselectivity and diastereo-selectivity (up to 95% ee and >20:1 dr) on a range of differentially substituted isoquinolines. Directing group studies demonstrate that the hydroxymethyl functional group at the C1-position is more efficient at enabling hydrogenation than other substituents, although high levels of enantioselectivity were conserved across a variety of polar and non-polar functional groups. By utilizing the generated chiral ß-amino alcohol as a functional handle, the synthetic utility is further highlighted via the synthesis of 1,2-fused oxazolidine, oxazolidinone, and morpholinone tetrahydroisoquinolines in one step. Additionally, a non-natural analog of the tetrahydroprotoberberine alkaloids was successfully synthesized.

5.
ACS Catal ; 10(23): 13834-13851, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-34567830

ABSTRACT

The asymmetric hydrogenation of heteroarenes has recently emerged as an effective strategy for the direct access to enantioenriched, saturated heterocycles. Although several homogeneous catalyst systems have been extensively developed for the hydrogenation of heteroarenes with high levels of chemo- and stereoselectivity, the development of mild conditions that allow for efficient and stereoselective hydrogenation of a broad range of substrates remains a challenge. This Perspective highlights recent advances in homogeneous catalysis of heteroarene hydrogenation as inspiration for the further development of asymmetric hydrogenation catalysts, and addresses underdeveloped areas and limitations of the current technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...